Chemical vapor deposition growth of two-dimensional heterojunctions

被引:73
作者
Cui, Yu
Li, Bo
Li, JingBo
Wei, ZhongMing [1 ]
机构
[1] Univ Chinese Acad Sci, Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional materials; heterojunctions; chemical vapor deposition; DER-WAALS HETEROSTRUCTURES; TRANSITION-METAL DICHALCOGENIDES; EPITAXIAL-GROWTH; MONOLAYER MOS2; LATERAL HETEROSTRUCTURES; LAYERED HETEROSTRUCTURES; INPLANE HETEROSTRUCTURES; CATALYTIC-ACTIVITY; CHARGE SEPARATION; 2D SEMICONDUCTOR;
D O I
10.1007/s11433-017-9105-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.
引用
收藏
页数:17
相关论文
共 149 条
  • [1] Two-dimensional flexible nanoelectronics
    Akinwande, Deji
    Petrone, Nicholas
    Hone, James
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Al Balushi ZY, 2016, NAT MATER, V15, P1166, DOI [10.1038/NMAT4742, 10.1038/nmat4742]
  • [3] 2D metal carbides and nitrides (MXenes) for energy storage
    Anasori, Babak
    Lukatskaya, Maria R.
    Gogotsi, Yury
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (02):
  • [4] Andres C.-G., 2014, 2D MATER, V1
  • [5] h-AlN-Mg(OH)2 van derWaals bilayer heterostructure: Tuning the excitonic characteristics
    Bacaksiz, C.
    Dominguez, A.
    Rubio, A.
    Senger, R. T.
    Sahin, H.
    [J]. PHYSICAL REVIEW B, 2017, 95 (07)
  • [6] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [7] Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures
    Bogaert, Kevin
    Liu, Song
    Chesin, Jordan
    Titow, Denis
    Gradecak, Silvija
    Garaj, Slaven
    [J]. NANO LETTERS, 2016, 16 (08) : 5129 - 5134
  • [8] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [9] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [10] Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
    Butler, Sheneve Z.
    Hollen, Shawna M.
    Cao, Linyou
    Cui, Yi
    Gupta, Jay A.
    Gutierrez, Humberto R.
    Heinz, Tony F.
    Hong, Seung Sae
    Huang, Jiaxing
    Ismach, Ariel F.
    Johnston-Halperin, Ezekiel
    Kuno, Masaru
    Plashnitsa, Vladimir V.
    Robinson, Richard D.
    Ruoff, Rodney S.
    Salahuddin, Sayeef
    Shan, Jie
    Shi, Li
    Spencer, Michael G.
    Terrones, Mauricio
    Windl, Wolfgang
    Goldberger, Joshua E.
    [J]. ACS NANO, 2013, 7 (04) : 2898 - 2926