Correlation between isoniazid resistance and superoxide reactivity in Mycobacterium tuberculosis KatG

被引:50
作者
Ghiladi, RA
Medzihradszky, KF
Rusnak, FM
de Montellano, PR [1 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[2] Mayo Clin & Mayo Fdn, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
[3] Mayo Clin & Mayo Fdn, Hematol Res Sect, Rochester, MN 55905 USA
关键词
D O I
10.1021/ja054366t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Isoniazid is an antituberculosis prodrug that requires activation by the catalase-peroxidase (KatG) of Mycobacterium tuberculosis. The activated species, presumed to be an isonicotinoyl radical, couples to NADH forming an isoniazid-NADH adduct that ultimately confers antitubercular activity. We have compared the catalytic properties of three KatGs associated with isoniazid resistance (resistance mutation KatGs, (RM)KatGs: R104L, H108Q, S315T) to wild-type enzyme and two additional lab mutations (wild-type phenotype KatGs, (WTP)KatGs: WT KatG, Y229F, R418L). Neither catalase nor peroxidase activities, nor the presence/absence of the Met-Tyr-Trp cross-link (as probed by LC/MS on tryptic digests of the protein), exhibited any correlation with isoniazid resistance. The yields of isoniazid-NADH adduct formed were determined to be 1-5, 4-12, and 20-70-fold greater for the (WTP)KatGs than the (RM)KatGs for the compound I, II, and III pathways, respectively, strongly suggesting a role for oxyferrous KatG (supported by superoxide consumption measurements) that correlates with drug resistance. Stopped-flow UV-visible spectroscopic studies revealed that all KatGs were capable of forming both compound II and III intermediates. Rates of compound II decay were accelerated 4-12-fold in the presence of isoniazid (vs absence) for the (WTP)KatGs but were unaffected by the drug for the (RM)KatGs. A mechanism for isoniazid resistance which accounts for the observed reactivity for each of the compound I, II, and III intermediates is proposed and suggests that the compound III pathway may be the primary factor in determining overall isoniazid resistance by specific KatG mutants, with secondary contributions arising from the compound I and II pathways.
引用
收藏
页码:13428 / 13442
页数:15
相关论文
共 82 条
[1]  
[Anonymous], ARCH PHARM PHARM MED
[2]  
BEERS RF, 1952, J BIOL CHEM, V195, P133
[3]   Crystal structure of Mycobacterium tuberculosis catalase-peroxidase [J].
Bertrand, T ;
Eady, NAJ ;
Jones, JN ;
Nagy, JM ;
Jamart-Grégoire, B ;
Raven, EL ;
Brown, KA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38991-38999
[4]   Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid [J].
Bulatovic, VM ;
Wengenack, NL ;
Uhl, JR ;
Hall, L ;
Roberts, GD ;
Cockerill, FR ;
Rusnak, F .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (09) :2765-2771
[5]   Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7 A resolution [J].
Carpena, X ;
Loprasert, S ;
Mongkolsuk, S ;
Switala, J ;
Loewen, PC ;
Fita, I .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (02) :475-489
[6]   STEADY-STATE KINETICS OF PEROXIDASE WITH 2,2'-AZINO-DI-(3-ETHYLBENZTHIAZOLINE-6-SULPHONIC ACID) AS CHROMOGEN [J].
CHILDS, RE ;
BARDSLEY, WG .
BIOCHEMICAL JOURNAL, 1975, 145 (01) :93-103
[7]   Analysis of heme structural heterogeneity in Mycobacterium tuberculosis catalase-peroxidase (KatG) [J].
Chouchane, S ;
Girotto, S ;
Kapetanaki, S ;
Schelvis, JPM ;
Yu, SW ;
Magliozzo, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (10) :8154-8162
[8]   Catalase-peroxidase (Mycobacterium tuberculosis tuberculosis KatG) catalysis and isoniazid activation [J].
Chouchane, S ;
Lippai, I ;
Magliozzo, RS .
BIOCHEMISTRY, 2000, 39 (32) :9975-9983
[9]   Autocatalytic radical reactions in physiological prosthetic heme modification [J].
Colas, C ;
de Montellano, PRO .
CHEMICAL REVIEWS, 2003, 103 (06) :2305-2332
[10]  
COULSON AFW, 1971, J BIOL CHEM, V246, P917