Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity

被引:25
作者
Yoshimoto, Makoto [1 ,2 ]
Sato, Mami [1 ]
Yoshimoto, Noriko [1 ]
Nakao, Katsumi [2 ]
机构
[1] Yamaguchi Univ, Dept Appl Mol Biosci, Ube, Yamaguchi 7558611, Japan
[2] Yamaguchi Univ, Dept Chem Engn & Appl Chem, Ube, Yamaguchi 7558611, Japan
关键词
D O I
10.1021/bp070392e
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NADI) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD(+)-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD(+) concentrations were 2.3 mg/ mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD(+) was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD(+) as well as the free YADH with and without NAD(+). Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD(+) at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NADI was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD(+) revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD(+). This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD(+). On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD(+) and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD(+) at 50 degrees C than at 45 degrees C. This was considered to be because even at 50 degrees C the stabilization effect of lipid membranes on the tertiary and quaternary structures of the liposomal YADH allowed the enzyme to form its thermostable complex with NAD(+) in liposomes.
引用
收藏
页码:576 / 582
页数:7
相关论文
共 50 条
[41]   SPECTROPHOTOMETRIC DETERMINATION OF ENZYME-ACTIVITY - ALCOHOL-DEHYDROGENASE (ADH) [J].
WALKER, JRL .
BIOCHEMICAL EDUCATION, 1992, 20 (01) :42-43
[42]   Thermal stability of alcohol dehydrogenase enzyme determined by activity assay and calorimetry [J].
Nath, S ;
Satpathy, GR ;
Mantri, R ;
Deep, S ;
Ahluwalia, JC .
THERMOCHIMICA ACTA, 1998, 309 (1-2) :193-196
[43]   Two-Enzyme Hydrogen-Borrowing Amination of Alcohols Enabled by a Cofactor-Switched Alcohol Dehydrogenase [J].
Thompson, Matthew P. ;
Turner, Nicholas J. .
CHEMCATCHEM, 2017, 9 (20) :3833-3836
[44]   ROLE OF ZINC IN ALCOHOL DEHYDROGENASE .5. EFFECT OF METAL-BINDING AGENTS ON THE STRUCTURE OF THE YEAST ALCOHOL DEHYDROGENASE MOLECULE [J].
KAGI, JHR ;
VALLEE, BL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1960, 235 (11) :3188-3192
[45]   YEAST ALCOHOL-DEHYDROGENASE ACTIVITY ON SUBSTITUTED 3-PHENYL-PROPANOLS [J].
SUND, EH ;
LOVE, RW .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1977, 173 (MAR20) :48-48
[46]   KINETIC MECHANISM OF YEAST ALCOHOL-DEHYDROGENASE ACTIVITY WITH SECONDARY ALCOHOLS AND KETONES [J].
TRIVIC, S ;
LESKOVAC, V .
INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1994, 31 (05) :387-391
[48]   ZINC AND THE MOLECULAR STRUCTURE OF YEAST ALCOHOL DEHYDROGENASE [(YADH)ZN4] [J].
KAGI, JHR .
FEDERATION PROCEEDINGS, 1959, 18 (01) :484-484
[49]   Structure and function of yeast alcohol dehydrogenase (vol 65, pg 213, 2000) [J].
Trivic, S ;
Leskovac, V .
JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2000, 65 (08) :609-609
[50]   CD-TITRATION OF ENZYME-COENZYME COMPLEXES OF YEAST ALCOHOL-DEHYDROGENASE (YADH) [J].
TEMLER, RS ;
KAGI, JHR .
EXPERIENTIA, 1974, 30 (06) :693-693