Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity

被引:25
作者
Yoshimoto, Makoto [1 ,2 ]
Sato, Mami [1 ]
Yoshimoto, Noriko [1 ]
Nakao, Katsumi [2 ]
机构
[1] Yamaguchi Univ, Dept Appl Mol Biosci, Ube, Yamaguchi 7558611, Japan
[2] Yamaguchi Univ, Dept Chem Engn & Appl Chem, Ube, Yamaguchi 7558611, Japan
关键词
D O I
10.1021/bp070392e
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NADI) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD(+)-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD(+) concentrations were 2.3 mg/ mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD(+) was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD(+) as well as the free YADH with and without NAD(+). Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD(+) at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NADI was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD(+) revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD(+). This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD(+). On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD(+) and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD(+) at 50 degrees C than at 45 degrees C. This was considered to be because even at 50 degrees C the stabilization effect of lipid membranes on the tertiary and quaternary structures of the liposomal YADH allowed the enzyme to form its thermostable complex with NAD(+) in liposomes.
引用
收藏
页码:576 / 582
页数:7
相关论文
共 50 条
[21]   STABILIZATION OF YEAST ALCOHOL-DEHYDROGENASE IMMOBILIZED BY COPOLYMERIZATION IN A POLYACRYLAMIDE-GEL [J].
BILLE, V ;
PLAINCHAMP, D ;
REMACLE, J .
ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1987, 95 (03) :B109-B109
[22]   The role of conformational zinc in decreasing the aggregation and increasing the stabilization of yeast alcohol dehydrogenase [J].
Rezaei-Tavirani, M ;
Miroliaei, M ;
Gorgani, MN ;
Moosavi-Movahedi, AA .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :561A-561A
[23]   Comparative study of alcohol dehydrogenase activity in flor yeast extracts [J].
Blandino, A ;
Caro, I ;
Cantero, D .
BIOTECHNOLOGY LETTERS, 1997, 19 (07) :651-654
[24]   ALCOHOL-DEHYDROGENASE ACTIVITY IN YEAST SACCHAROMYCES-FRAGILIS [J].
SANFACON, R ;
ROUILLARD, R ;
HEICK, HMC ;
GOUPIL, M .
CANADIAN JOURNAL OF MICROBIOLOGY, 1972, 18 (01) :35-+
[25]   Steering the enzymatic activity of proteins by ionic liquids. A case study of the enzyme kinetics of yeast alcohol dehydrogenase [J].
Weibels, Sebastian ;
Syguda, Adrian ;
Herrmann, Christian ;
Weingaertner, Hermann .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (13) :4635-4639
[26]   ON INFLUENCE OF ADENYLIC ACID SYSTEM ON ACTIVITY OF YEAST ALCOHOL DEHYDROGENASE [J].
STEINBRE.I ;
AUGUSTIN, HW ;
HOFMANN, E .
ACTA BIOLOGICA ET MEDICA GERMANICA, 1968, 21 (04) :409-&
[27]   Comparative study of alcohol dehydrogenase activity in flor yeast extracts [J].
A. Blandino ;
I. Caro ;
D. Cantero .
Biotechnology Letters, 1997, 19 :651-654
[28]   INHIBITION OF ALCOHOL DEHYDROGENASE ACTIVITY FROM YEAST BY GERMANATE AND BORATE [J].
WESER, U .
HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1968, 349 (11) :1479-&
[29]   STUDIES OF EFFECTS OF ETHYLENE ON YEAST ALCOHOL-DEHYDROGENASE ACTIVITY [J].
FUCHS, Y ;
GERTMAN, E .
PLANT AND CELL PHYSIOLOGY, 1974, 15 (04) :701-708
[30]   THE INFLUENCE OF ENZYME CONCENTRATION ON THE ENCAPSULATION OF GLUTAMATE-DEHYDROGENASE AND ALCOHOL-DEHYDROGENASE IN RED-BLOOD-CELLS [J].
SANZ, S ;
PINILLA, M ;
GARIN, M ;
TIPTON, KF ;
LUQUE, J .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 1995, 22 :223-231