Nearly Quadratic Mappings over p-Adic Fields

被引:0
作者
Gordji, M. Eshaghi [2 ]
Khodaei, H. [2 ]
Kim, Gwang Hui [1 ]
机构
[1] Kangnam Univ, Dept Math, Yongin 446702, Gyeonggi, South Korea
[2] Semnan Univ, Dept Math, Semnan, Iran
基金
新加坡国家研究基金会;
关键词
ULAM-RASSIAS STABILITY; FUNCTIONAL-EQUATION; HOMOMORPHISMS;
D O I
10.1155/2012/285807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some stability results over p-adic fields for the generalized quadratic functional equation Sigma(n)(k=2)Sigma(k)(i1=2)Sigma(k+1)(i2=i+1) ... Sigma(in-k+1=in-k)+1(n)f(Sigma(n)(i=1,i not equal i1,...,in-k+1) x(i) - Sigma(n-k+1)(r=1)x(ir)) + f(Sigma(n)(i=1)x(i)) = 2(n-1)Sigma(n)(i=1)f(x(i)), where n is an element of N and n >= 2.
引用
收藏
页数:12
相关论文
共 48 条
  • [1] Aczel J., 1989, ENCY MATH ITS APPL, V31
  • [2] [Anonymous], 2010, STABILITY FUNCTIONAL
  • [3] [Anonymous], 1998, PROGR NONLINEAR DIFF
  • [4] [Anonymous], J INEQUALITIES PURE
  • [5] Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
  • [6] Arriola LM, 2005, REAL ANAL EXCH, V31, P125
  • [7] Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
    Cao, Huai-Xin
    Lv, Ji-Rong
    Rassias, J. M.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [8] Functional inequalities in non-Archimedean Banach spaces
    Cho, Yeol Je
    Park, Choonkil
    Saadati, Reza
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1238 - 1242
  • [9] ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES
    CZERWIK, S
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 : 59 - 64
  • [10] A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C*-ternary algebras
    Ebadian, A.
    Ghobadipour, N.
    Gordji, M. Eshaghi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)