Sparse Spatio-temporal Gaussian Processes with General Likelihoods

被引:0
作者
Hartikainen, Jouni [1 ]
Riihimaki, Jaakko [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Biomed Engn & Computat Sci, Helsinki, Finland
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I | 2011年 / 6791卷
关键词
Gaussian processes; spatio-temporal data; expectation propagation; sparse approximations; INFERENCE; APPROXIMATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider learning of spatio-temporal processes by formulating a Gaussian process model as a solution to an evolution type stochastic partial differential equation. Our approach is based on converting the stochastic infinite-dimensional differential equation into a finite dimensional linear time invariant (LTI) stochastic differential equation (SDE) by discretizing the process spatially. The LTI SDE is time-discretized analytically, resulting in a state space model with linear-Gaussian dynamics. We use expectation propagation to perform approximate inference on non-Gaussian data, and show how to incorporate sparse approximations to further reduce the computational complexity. We briefly illustrate the proposed methodology with a simulation study and with a real world modelling problem.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 22 条
[1]  
Alvarez Mauricio, 2009, Artificial Intelligence and Statistics, P9
[2]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
[3]  
Cressie N., 2002, ENCY ENV, V4, P2045
[4]  
Cseke B, 2011, J MACH LEARN RES, V12, P417
[5]   SURVEY OF INFINITE-DIMENSIONAL FILTERING [J].
CURTAIN, R .
SIAM REVIEW, 1975, 17 (03) :395-411
[6]  
Da Prato G., 1992, STOCHASTIC EQUATIONS
[7]  
Gelfand AE, 2010, CH CRC HANDB MOD STA, P1, DOI 10.1201/9781420072884
[8]  
Harmon Ray W., 1978, Distributed parameter systems: identification, estimation, and control
[9]  
Hartikainen Jouni, 2010, Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), P379, DOI 10.1109/MLSP.2010.5589113
[10]  
Heskes T, 2002, UNCERTAINTY ARTIFICI, P216