On a class of reflected backward stochastic Volterra integral equations and related time-inconsistent optimal stopping problems

被引:4
作者
Agram, Nacira [1 ]
Djehiche, Boualem [2 ]
机构
[1] Linnaeus Univ LNU, Dept Math, Vaxjo, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Backward stochastic differential equation; Snell envelope; Volterra integral equation; Time-inconsistent optimal stopping problem; SDES;
D O I
10.1016/j.sysconle.2021.104989
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a class of one-dimensional continuous reflected backward stochastic Volterra integral equations driven by Brownian motion, where the reflection keeps the solution above a given stochastic process (lower obstacle). We prove existence and uniqueness by a fixed point argument and derive a comparison result. Moreover, we show how the solution of our problem is related to a time-inconsistent optimal stopping problem and derive an optimal strategy. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 22 条