We introduce a class of one-dimensional continuous reflected backward stochastic Volterra integral equations driven by Brownian motion, where the reflection keeps the solution above a given stochastic process (lower obstacle). We prove existence and uniqueness by a fixed point argument and derive a comparison result. Moreover, we show how the solution of our problem is related to a time-inconsistent optimal stopping problem and derive an optimal strategy. (C) 2021 The Authors. Published by Elsevier B.V.
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, NorwayUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Hu, Yaozhong
Oksendal, Bernt
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, NorwayUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, NorwayUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Hu, Yaozhong
Oksendal, Bernt
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, NorwayUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada