Regularity results for a class of obstacle problems under nonstandard growth conditions

被引:35
作者
Eleuteri, Michela [2 ]
Habermann, Jens [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
[2] Univ Trent, Dipartimento Matemat, I-38100 Trento, Italy
关键词
obstacle problems; nonstandard growth; minimizers of functionals; Holder continuity;
D O I
10.1016/j.jmaa.2008.03.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove regularity results for minimizers of functionals F(u, Omega) := f(x, u, Du)dx in the class K := {u epsilon W-1,W-p(x) (Omega, R): u >= Psi}, where Psi : Omega -> R is a fixed function and f is quasiconvex and fulfills a growth condition of the type L-1 vertical bar z vertical bar(p(x)) <= f(x, xi, z) <= L(1 + vertical bar z vertical bar(p(x))), with growth exponent p : Omega -> (1, infinity). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1120 / 1142
页数:23
相关论文
共 32 条
[21]  
GIAQUINTA M, 1983, MULTIPLES INTEGRALS
[22]  
Giaquinta M., 1993, INTRO REGULARITY THE
[23]  
Giusti E., 2003, DIRECT METHODS CALCU
[24]  
HABERMANN I, NODEA NONLI IN PRESS, DOI DOI 10.1007/S00030-007-7007-7
[25]  
HABERMANN J, 2006, THESIS U ERLANGEN
[26]   Partial regularity for minima of higher order functionals with p(x)-growth [J].
Habermann, Jens .
MANUSCRIPTA MATHEMATICA, 2008, 126 (01) :1-40
[27]   Calderon-Zygmund estimates for higher order systems with p(x) growth [J].
Habermann, Jens .
MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (02) :427-462
[28]  
Hästö PA, 2005, CONTEMP MATH, V370, P133
[29]  
MANFREDI JJ, 1988, J DIFFERENTIAL EQUAT, V76
[30]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1