Lagrangian descriptors for two dimensional, area preserving, autonomous and nonautonomous maps

被引:47
|
作者
Lopesino, Carlos [1 ]
Balibrea, Francisco [1 ]
Wiggins, Stephen [2 ]
Mancho, Ana M. [1 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[2] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
关键词
Lagrangian descriptor; Chaotic saddle; Autonomous map; Nonautonomous map; LINEARIZATION; DYNAMICS; SYSTEMS;
D O I
10.1016/j.cnsns.2015.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalize the method of Lagrangian descriptors to two dimensional, area preserving, autonomous and nonautonomous discrete time dynamical systems. We consider four generic model problems - a hyperbolic saddle point for a linear, area-preserving autonomous map, a hyperbolic saddle point for a nonlinear, area-preserving autonomous map, a hyperbolic saddle point for linear, area-preserving nonautonomous map, and a hyperbolic saddle point for nonlinear, area-preserving nonautonomous map. The discrete time setting allows us to evaluate the expression for the Lagrangian descriptors explicitly for a certain class of norms. This enables us to provide a rigorous setting for the notion that the "singular sets" of the Lagrangian descriptors correspond to the stable and unstable manifolds of hyperbolic invariant sets, as well as to understand how this depends upon the particular norms that are used. Finally we analyze, from the computational point of view, the performance of this tool for general nonlinear maps, by computing the "chaotic saddle" for autonomous and nonautonomous versions of the Henon map. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [1] An Extension of Discrete Lagrangian Descriptors for Unbounded Maps
    Garcia-Garrido, Victor J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (05):
  • [2] Secondary nontwist phenomena in area-preserving maps
    Vieira Abud, C.
    Caldas, I. L.
    CHAOS, 2012, 22 (03)
  • [3] A numerical study of infinitely renormalizable area-preserving maps
    Gaidashev, Denis
    Johnson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 283 - 301
  • [4] A new nodal solver for the two dimensional Lagrangian hydrodynamics
    Corot, T.
    Mercier, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 : 1 - 25
  • [5] SPECTRAL PROPERTIES OF RENORMALIZATION FOR AREA-PRESERVING MAPS
    Gaidashev, Denis
    Johnson, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3651 - 3675
  • [6] RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS
    Gaidashev, D.
    Johnson, T.
    Martens, M.
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) : 129 - 159
  • [7] Analyzing two-dimensional cellular detonation flows from numerical simulations with proper orthogonal decomposition and Lagrangian descriptors
    Yan, Chian
    Lyu, Yifan
    Darwish, Ahmed
    Kadem, Lyes
    Ng, Hoi Dick
    JOURNAL OF VISUALIZATION, 2025, 28 (01) : 115 - 131
  • [8] On dynamics and bifurcations of area-preserving maps with homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey
    NONLINEARITY, 2015, 28 (09) : 3027 - 3071
  • [9] Records and Occupation Time Statistics for Area-Preserving Maps
    Artuso, Roberto
    de Oliveira, Tulio M. M.
    Manchein, Cesar
    ENTROPY, 2023, 25 (02)
  • [10] Periodic points for area-preserving birational maps of surfaces
    Iwasaki, Katsunori
    Uehara, Takato
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 289 - 318