Bayesian estimation of self-similarity exponent

被引:24
|
作者
Makarava, Natallia [1 ]
Benmehdi, Sabah [1 ,2 ]
Holschneider, Matthias [1 ]
机构
[1] Univ Potsdam, Interdisciplinary Ctr Dynam Complex Syst, D-14476 Potsdam, Germany
[2] Univ Bordj Bou Arreridj, Bordj Bou Arreridj 34265, Algeria
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 02期
关键词
DIFFUSION;
D O I
10.1103/PhysRevE.84.021109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study we propose a Bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional Brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-Gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bayesian estimation of the self-similarity exponent of the Nile River fluctuation
    Benmehdi, S.
    Makarava, N.
    Benhamidouche, N.
    Holschneider, M.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2011, 18 (03) : 441 - 446
  • [2] After notes on self-similarity exponent for fractal structures
    Fernandez-Martinez, Manuel
    Caravaca Garraton, Manuel
    OPEN PHYSICS, 2017, 15 (01): : 440 - 448
  • [3] Vanishing Points Estimation by Self-Similarity
    Kogan, Hadas
    Maurer, Ron
    Keshet, Renato
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 755 - 761
  • [4] SELF-SIMILARITY
    LEWELLEN, GB
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (03) : 1023 - 1040
  • [5] A Bayesian Method for Incorporating Self-Similarity Into Earthquake Slip Inversions
    Amey, R. M. J.
    Hooper, A.
    Walters, R. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (07) : 6052 - 6071
  • [6] Estimation of the self-similarity parameter using the wavelet transform
    Soltani, S
    Simard, P
    Boichu, D
    SIGNAL PROCESSING, 2004, 84 (01) : 117 - 123
  • [7] A new estimator of the self-similarity exponent through the empirical likelihood ratio test
    Bianchi, Sergio
    Li, Qiushi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (11) : 1982 - 2001
  • [8] Measuring the self-similarity exponent in Levy stable processes of financial time series
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    Trinidad Segovia, J. E.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (21) : 5330 - 5345
  • [9] Universal self-similarity of porous media equation with absorption: the critical exponent case
    Qi, YW
    Liu, XD
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 442 - 463
  • [10] Generalized self-similarity
    Cabrelli, CA
    Molter, UM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) : 251 - 260