Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone
被引:5
作者:
Bulut, Dalia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Dusseldorf, Inst Mol Enzyme Technol, Res Ctr Julich, Wilhelm Johnen Str, D-52426 Julich, Germany
Univ Bielefeld, Fac Chem, Univ Str 25, D-33615 Bielefeld, GermanyUniv Dusseldorf, Inst Mol Enzyme Technol, Res Ctr Julich, Wilhelm Johnen Str, D-52426 Julich, Germany
The stereoselective synthesis of chiral 1,3-diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of beta-hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a beta-hydroxy-beta-trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2-trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the beta-hydroxy-beta-trifluoromethyl ketone was identified after purification and subsequent MALDI-TOF mass spectrometric analysis. As a result, a new NADP+-dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the beta-hydroxy-beta-trifluoromethyl ketone to its corresponding 1,3-diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N- or C-terminal His-tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N-terminal Histag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the beta-hydroxy-beta-trifluoromethyl ketone.