Pair-distribution functions of two-temperature two-mass systems: Comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo, and Kohn-Sham calculations for dense hydrogen

被引:35
作者
Dharma-wardana, M. W. C. [1 ]
Murillo, Michael S. [2 ]
机构
[1] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[2] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 02期
关键词
D O I
10.1103/PhysRevE.77.026401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two-temperature, two-mass quasiequilibrium plasmas may occur in electron-ion plasmas, nuclear-matter, as well as in electron-hole condensed-matter systems. Dense two-temperature hydrogen plasmas straddle the difficult partially degenerate regime of electron densities and temperatures which are important in astrophysics, in inertial-confinement fusion research, and other areas of warm dense-matter physics. Results from quantum Monte Carlo (QMC) are used to benchmark the procedures used in classical molecular-dynamics simulations and hypernetted chain (HNC) and classical-map HNC (CHNC) methods to derive electron-electron and electron-proton pair-distribution functions. Where QMC is not available, we used Kohn-Sham results as the reference calculation. Then, nonequilibrium molecular dynamics for two-temperature, two-mass plasmas are used to obtain pair distribution functions without specifying the interspecies cross temperature. Using these results, the correct HNC and CHNC procedures for the evaluation of pair-distribution functions in two-temperature two-mass two-component charged fluids are established and results for a mass ratio of 1:5, typical of electron-hole fluids, are presented.
引用
收藏
页数:7
相关论文
共 28 条
[1]  
Agaronyan F. A., 1987, Astrophysics, V27, P413, DOI 10.1007/BF01008201
[2]   STATISTICAL-MECHANICS OF A 2-TEMPERATURE, CLASSICAL PLASMA [J].
BOERCKER, DB ;
MORE, RM .
PHYSICAL REVIEW A, 1986, 33 (03) :1859-1869
[3]   Coulomb tunneling for fusion reactions in dense matter: Path integral Monte Carlo versus mean field [J].
Chugunov, A. I. ;
DeWitt, H. E. ;
Yakovlev, D. G. .
PHYSICAL REVIEW D, 2007, 76 (02)
[4]   Quantum Monte Carlo simulation of the high-pressure molecular-atomic crossover in fluid hydrogen [J].
Delaney, Kris T. ;
Pierleoni, Carlo ;
Ceperley, D. M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[5]   Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing [J].
Desjarlais, MP .
PHYSICAL REVIEW B, 2003, 68 (06)
[6]   Spin-polarized stable phases of the 2D electron fluid at finite temperatures [J].
Dharma-wardana, MWC ;
Perrot, F .
PHYSICAL REVIEW LETTERS, 2003, 90 (13) :4
[7]   Equation of state and the Hugoniot of laser shock-compressed deuterium: Demonstration of a basis-function-free method for quantum calculations [J].
Dharma-wardana, MWC ;
Perrot, F .
PHYSICAL REVIEW B, 2002, 66 (01) :1-4
[8]   Static and dynamic conductivity of warm dense matter within a density-functional approach: Application to aluminum and gold [J].
Dharma-wardana, MWC .
PHYSICAL REVIEW E, 2006, 73 (03) :1-13
[9]   Simple classical mapping of the spin-polarized quantum electron gas: Distribution functions and local-field corrections [J].
Dharma-Wardana, MWC ;
Perrot, F .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :959-962
[10]   DENSITY-FUNCTIONAL THEORY OF HYDROGEN PLASMAS [J].
DHARMAWARDANA, MWC ;
PERROT, F .
PHYSICAL REVIEW A, 1982, 26 (04) :2096-2104