Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?

被引:286
作者
Li, Hongyang [1 ]
Cormier, Marc [1 ]
Zhang, Ning [1 ,2 ]
Inglis, Julie [3 ]
Li, Jing [1 ,4 ]
Dahn, J. R. [1 ]
机构
[1] Dalhousie Univ, Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada
[2] Northeastern Univ, Sch Met, Shenyang 110819, Liaoning, Peoples R China
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
[4] Tesla, 3500 Deer Creek Rd, Palo Alto, CA 94304 USA
基金
加拿大自然科学与工程研究理事会;
关键词
LAYERED CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; CAPACITY; 1ST-PRINCIPLES; SUBSTITUTION; BEHAVIOR; MN; AL; CO;
D O I
10.1149/2.1381902jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As a derivative of LiNiO2, NCA (LiNi(1-x-y)CoxAl(y)O(2)) is widely used in the electric vehicle industry because of its high energy density. It is thought that Co and Al both play important roles in enhancing NCA material properties. However, there is no solid evidence in the literature that clearly shows that Co is required in NCA with high nickel (e.g. when 1-x-y > 0.9) content. Therefore, a systematic study on the roles of different cation substituents in a series of LiNi1-nMnO2 (M = Al, Mn, Mg, or Co) materials was made. In-situ X-ray diffraction (XRD) and differential capacity versus voltage (dQ/dV vs. V) studies showed that the multiple phase transitions in LixNiO2 during charge and discharge, thought to cause poor charge-discharge capacity retention, were suppressed in LixNi0.95M0.05O2 (M = Al, Mn, or Mg), while 5% Co failed to suppress the phase transitions. First principles calculations were made to understand the function of each substituent. Accelerating rate calorimetry shows that unlike Al, Mn, or Mg, Co has no contribution to safety improvement. Therefore, we believe that Co brings little or no value at all to NCA-type materials with high Ni content (> 90% Ni in the transition metal layer) and we hope this paper will spur more interest in Co-free materials. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页码:A429 / A439
页数:11
相关论文
共 50 条
  • [41] Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries
    Sun, H. Hohyun
    Kim, Un-Hyuck
    Park, Jeong-Hyeon
    Park, Sang-Wook
    Seo, Dong-Hwa
    Heller, Adam
    Mullins, C. Buddie
    Yoon, Chong S.
    Sun, Yang-Kook
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [42] A synergetic modification approach toward high capacity Ni-rich cathode materials for next generation lithium-ion batteries
    Sattar, Tahir
    Sim, Seong-Ju
    Doo, Seok-Gwang
    Jin, Bong-Soo
    Kim, Hyun-Soo
    SOLID STATE IONICS, 2022, 387
  • [43] Study of the Reactions between Ni-Rich Positive Electrode Materials and Aqueous Solutions and their Relation to the Failure of Li-Ion Cells
    Hamam, Ines
    Zhang, Ning
    Liu, Aaron
    Johnson, M. B.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)
  • [44] Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries
    Yang, Huiping
    Wu, Hong-Hui
    Ge, Mingyuan
    Li, Lingjun
    Yuan, Yifei
    Yao, Qi
    Chen, Jie
    Xia, Lingfeng
    Zheng, Jiangming
    Chen, Zhaoyong
    Duan, Junfei
    Kisslinger, Kim
    Zeng, Xiao Cheng
    Lee, Wah-Keat
    Zhang, Qiaobao
    Lu, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (13)
  • [45] Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Ni-Rich Lithium Layered Oxide Cathodes for Lithium-Ion Batteries
    Reissig, Friederike
    Puls, Sebastian
    Placke, Tobias
    Winter, Martin
    Schmuch, Richard
    Gomez-Martin, Aurora
    CHEMSUSCHEM, 2022, 15 (11)
  • [46] Quantifying Degradation Parameters of Single-Crystalline Ni-Rich Cathodes in Lithium-Ion Batteries
    Zhao, Wengao
    Wang, Kuan
    Fan, Xinming
    Ren, Fucheng
    Xu, Xieyu
    Liu, Yangyang
    Xiong, Shizhao
    Liu, Xiangsi
    Zhang, Zhengfeng
    Si, Mayan
    Zhang, Ruizhuo
    van den Bergh, Wessel
    Yan, Pengfei
    Battaglia, Corsin
    Brezesinski, Torsten
    Yang, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (32)
  • [47] Enhanced Electrochemical and Structural Stability of Ni-rich Cathode Material by Lithium Metaborate Coating for Lithium-Ion Batteries
    Zhao, Zaowen
    Zhang, Bao
    Cheng, Lei
    Liu, Zihang
    Liu, Yun
    Su, Shilin
    Ming, Lei
    Zhang, Jiafeng
    Ou, Xing
    CHEMELECTROCHEM, 2022, 9 (04)
  • [48] High energy density and lofty thermal stability nickel-rich materials for positive electrode of lithium ion batteries
    Mezaal, Mohammed Adnan
    Qu, Limin
    Li, Guanghua
    Liu, Wei
    Zhao, Xiaoyuan
    Fan, Zhenzhen
    Lei, Lixu
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (08) : 2219 - 2229
  • [49] Dry carbon nanotube wrapping of Ni-rich layered oxide cathodes for lithium-ion batteries
    Ho, Van-Chuong
    Huynh, Thanh N.
    Jung, Hun-Gi
    Kim, Jung Ho
    Oh, Seung-Min
    Kim, Young-Jun
    Mun, Junyoung
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2025, 43
  • [50] Oxygen Release in Ni-rich Layered Cathode for Lithium-ion Batteries: Mechanisms and Mitigating Strategies
    Chu, Youqi
    Mu, Yongbiao
    Zou, Lingfeng
    Wu, Fuhai
    Yang, Lin
    Feng, Yitian
    Zeng, Lin
    CHEMELECTROCHEM, 2024, 11 (14):