The effect of elementary fibre variability on bamboo fibre strength

被引:43
作者
Wang, Fang [1 ]
Shao, Jiaxing [1 ]
Keer, Leon M. [2 ]
Li, Lu [1 ]
Zhang, Junqian [3 ]
机构
[1] Southwest Univ, Fac Mat & Energy, Chongqing 400715, Peoples R China
[2] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[3] Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China
基金
美国国家科学基金会;
关键词
Fibres; Microstructure; Strength; Statistical properties; Mechanical testing; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; WEIBULL ANALYSIS; COMPOSITES; BEHAVIOR; EXTRACTION; SISAL;
D O I
10.1016/j.matdes.2015.03.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tensile strength of brittle fibres exhibits statistical distribution and size dependence. In this work, the average strength of bamboo fibre is found to decrease from 568 to 483 MPa as mean diameter increases from 196.6 to 584.3 mu m. The morphologies of bamboo fibres with increasing diameters were investigated through Scanning Electron Microscopy (SEM) to demonstrate variations in the quantity of elementary fibres. The influence of elementary fibre distributions on the fibre strength was also studied. A modified Weibull model based on number of elementary fibres is proposed to perform scaling predictions for the fracture strength of the fibres at different between-fibre diameters. It was shown that the predicted results are in reasonable agreement with experimental data, highlighting the adequacies of the new analytical model for describing the diameter dependence of tensile strength. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 40 条
[1]   THE RELATION BETWEEN FILAMENT DIAMETER AND FRACTURE STRENGTH FOR ULTRA-HIGH-MODULUS POLYETHYLENE FIBERS [J].
AMORNSAKCHAI, T ;
CANSFIELD, DLM ;
JAWAD, SA ;
POLLARD, G ;
WARD, IM .
JOURNAL OF MATERIALS SCIENCE, 1993, 28 (06) :1689-1698
[2]   Strength distribution of elementary flax fibres [J].
Andersons, J ;
Sparnins, E ;
Joffe, R ;
Wallström, L .
COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (3-4) :693-702
[3]   Tensile static and fatigue behaviour of sisal fibres [J].
Belaadi, Ahmed ;
Bezazi, Abderrezak ;
Bourchak, Mostefa ;
Scarpa, Fabrizio .
MATERIALS & DESIGN, 2013, 46 :76-83
[4]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[5]   Reinforcement of wood with natural fibers [J].
Borri, A. ;
Corradi, M. ;
Speranzini, E. .
COMPOSITES PART B-ENGINEERING, 2013, 53 :1-8
[6]   Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments [J].
Cao, Y ;
Shibata, S ;
Fukumoto, I .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (03) :423-429
[7]   Assessment of the tensile properties of coir, bamboo and jute fibre [J].
Defoirdt, Nele ;
Biswas, Subhankar ;
De Vriese, Linde ;
Tran, Le Quan Ngoc ;
Van Acker, Joris ;
Ahsan, Qumrul ;
Gorbatikh, Larissa ;
Van Vuure, Aart ;
Verpoest, Ignaas .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (05) :588-595
[8]  
Fidelis MariaErnestina Alves., 2013, J MATER RES TECHNOL, V2, P149, DOI [10.1016/j, DOI 10.1016/J.JMRT.2013.02.003]
[9]   Wetting behaviour and surface properties of technical bamboo fibres [J].
Fuentes, C. A. ;
Tran, L. Q. N. ;
Dupont-Gillain, C. ;
Vanderlinden, W. ;
De Feyter, S. ;
Van Vuure, A. W. ;
Verpoest, I. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 380 (1-3) :89-99
[10]   Tensile strength analysis of palm leaf sheath fiber with Weibull distribution [J].
Guo, M. ;
Zhang, T. H. ;
Chen, B. W. ;
Cheng, L. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 62 :45-51