Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloy

被引:16
作者
Latham, Julie-Anne [2 ]
Howlett, Patrick C. [1 ]
MacFarlane, Douglas R. [3 ]
Forsyth, Maria [1 ]
机构
[1] Deakin Univ, ITRI, Burwood, Vic 3125, Australia
[2] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia
[3] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
关键词
AZ31; Ionic liquid; Cyclic voltammetry; Anodic passivation; CORROSION PROTECTION; CYCLIC VOLTAMMETRY; SCAN RATES; BEHAVIOR; COMPENSATION; ELECTROLYTE;
D O I
10.1016/j.electacta.2011.03.142
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical behaviour of the ionic liquid trihexyl(tetradecyl)phosphonium bis(2.4,4-trimethylpentyl)phosphinate ([P-6,P-6,P-6,P-14][(C-i(8))(2)PO2]) over different potential ranges, on both an inert substrate (glassy carbon), and AZ31 magnesium alloy has been investigated. On the glassy carbon electrode the ionic liquid exhibits an electrochemical window of 4 V in an argon environment. Anodic cycling of AZ31 in the ionic liquid resulted in a reduction in current density of over two orders of magnitude after one cycle and also stifled ionic liquid oxidation at approximately 2.0 V, indicating a passive response in the ionic liquid as a result of the deposition of a surface film. In contrast, cathodic cycling of AZ31 led to an increasing current density response with progressive cycles. The understanding of this electrochemical behaviour will allow for future optimisation of electrochemical parameters to obtain a robust and corrosion protective film on AZ31 alloy. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5328 / 5334
页数:7
相关论文
共 26 条
[11]   Ultrafast cyclic voltammetry at scan rates of up to 3 MV s-1 through a single-opamp circuit with positive feedback compensation of ohmic drop [J].
Guo, ZY ;
Lin, XQ .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 568 (1-2) :45-53
[12]   The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys [J].
Howlett, P. C. ;
Khoo, T. ;
Mooketsi, G. ;
Efthimiadis, J. ;
MacFarlane, D. R. ;
Forsyth, M. .
ELECTROCHIMICA ACTA, 2010, 55 (07) :2377-2383
[13]   An investigation of a phosphinate-based ionic liquid for corrosion protection of magnesium alloy AZ31 [J].
Howlett, Patrick C. ;
Zhang, Stephen ;
MacFarlane, Douglas R. ;
Forsyth, Maria .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2007, 60 (01) :43-46
[14]   The electrochemical reduction of aqueous hexamminecobalt(III): Studies of adsorption behaviour with fast scan voltammetry [J].
Ji, XB ;
Chevallier, FG ;
Clegg, AD ;
Buzzeo, MC ;
Compton, RG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 581 (02) :249-257
[15]   Room temperature ionic liquids and their mixtures - a review [J].
Marsh, KN ;
Boxall, JA ;
Lichtenthaler, R .
FLUID PHASE EQUILIBRIA, 2004, 219 (01) :93-98
[16]  
Ohno H, 2005, ELECTROCHEMICAL ASPECTS OF IONIC LIQUIDS, P1, DOI 10.1002/0471762512
[17]   Analytical applications of room-temperature ionic liquids: A review of recent efforts [J].
Pandey, S .
ANALYTICA CHIMICA ACTA, 2006, 556 (01) :38-45
[18]   Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J].
Pardo, A. ;
Merino, M. C. ;
Coy, A. E. ;
Viejo, F. ;
Arrabal, R. ;
Feliu, S., Jr. .
ELECTROCHIMICA ACTA, 2008, 53 (27) :7890-7902
[19]  
Revie R.W., 2000, CORROSION HDB, P796
[20]  
Schumann S, 2006, MAGNESIUM TECHNOLOGY: METALLURGY, DESIGN DATA, APPLICATIONS, P499