Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloy

被引:16
作者
Latham, Julie-Anne [2 ]
Howlett, Patrick C. [1 ]
MacFarlane, Douglas R. [3 ]
Forsyth, Maria [1 ]
机构
[1] Deakin Univ, ITRI, Burwood, Vic 3125, Australia
[2] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia
[3] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
关键词
AZ31; Ionic liquid; Cyclic voltammetry; Anodic passivation; CORROSION PROTECTION; CYCLIC VOLTAMMETRY; SCAN RATES; BEHAVIOR; COMPENSATION; ELECTROLYTE;
D O I
10.1016/j.electacta.2011.03.142
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical behaviour of the ionic liquid trihexyl(tetradecyl)phosphonium bis(2.4,4-trimethylpentyl)phosphinate ([P-6,P-6,P-6,P-14][(C-i(8))(2)PO2]) over different potential ranges, on both an inert substrate (glassy carbon), and AZ31 magnesium alloy has been investigated. On the glassy carbon electrode the ionic liquid exhibits an electrochemical window of 4 V in an argon environment. Anodic cycling of AZ31 in the ionic liquid resulted in a reduction in current density of over two orders of magnitude after one cycle and also stifled ionic liquid oxidation at approximately 2.0 V, indicating a passive response in the ionic liquid as a result of the deposition of a surface film. In contrast, cathodic cycling of AZ31 led to an increasing current density response with progressive cycles. The understanding of this electrochemical behaviour will allow for future optimisation of electrochemical parameters to obtain a robust and corrosion protective film on AZ31 alloy. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5328 / 5334
页数:7
相关论文
共 26 条
[1]   Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry [J].
Amatore, C ;
Maisonhaute, E ;
Simonneau, G .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 486 (02) :141-155
[2]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[3]   Exploring corrosion protection of Mg via ionic liquid pretreatment [J].
Birbilis, Nick ;
Howlett, Patrick C. ;
MacFarlane, Douglas R. ;
Forsyth, Maria .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (08) :4496-4504
[4]   IR ELIMINATION IN ELECTROCHEMICAL CELLS [J].
BRITZ, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1978, 88 (03) :309-352
[5]   Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems [J].
Buzzeo, MC ;
Hardacre, C ;
Compton, RG .
CHEMPHYSCHEM, 2006, 7 (01) :176-180
[6]   Ionic liquids: solvent properties and organic reactivity [J].
Chiappe, C ;
Pieraccini, D .
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2005, 18 (04) :275-297
[7]   Potentiostatic Control of Ionic Liquid Surface Film Formation on ZE41 Magnesium Alloy [J].
Efthimiadis, Jim ;
Neil, Wayne C. ;
Bunter, Andrew ;
Howlett, Patrick C. ;
Hinton, Bruce R. W. ;
MacFarlane, Douglas R. ;
Forsyth, Maria .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (05) :1317-1323
[8]   An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31 [J].
Forsyth, Maria ;
Howlett, Patrick C. ;
Tan, Seal K. ;
MacFarlane, Douglas R. ;
Birbilis, Nick .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (11) :B52-B55
[9]   Phosphonium-Based Ionic Liquids: An Overview [J].
Fraser, Kevin J. ;
MacFarlane, Douglas R. .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2009, 62 (04) :309-321
[10]  
Gorlov M, 2008, DALTON T, P2655, DOI 10.1039/b716419j