Interpreting Functional Impact of Genetic Variations by Network QTL for Genotype-Phenotype Association Study

被引:5
作者
Yuan, Kai [1 ]
Zeng, Tao [1 ,2 ,3 ]
Chen, Luonan [1 ,4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Shanghai Inst Biochem & Cell Biol, Key Lab Syst Biol, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, BioMed Big Data Ctr, Shanghai Inst Nutr & Hlth, Shanghai, Peoples R China
[3] Guangzhou Lab, Guangzhou, Peoples R China
[4] Univ Chinese Acad Sci, Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou, Peoples R China
[5] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[6] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金; 日本科学技术振兴机构;
关键词
genetic variation; expression quantitative trait loci; network quantitative trait loci; data integration; single-sample network; single cell; network trait; network signature; QUANTITATIVE TRAIT LOCI; CELL LUNG-CANCER; SIGNALING PATHWAY; EQTL ANALYSIS; EXPRESSION; TISSUE; DISEASE; IDENTIFICATION; PROLIFERATION; TRANSCRIPTION;
D O I
10.3389/fcell.2021.720321
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
An enormous challenge in the post-genome era is to annotate and resolve the consequences of genetic variation on diverse phenotypes. The genome-wide association study (GWAS) is a well-known method to identify potential genetic loci for complex traits from huge genetic variations, following which it is crucial to identify expression quantitative trait loci (eQTL). However, the conventional eQTL methods usually disregard the systematical role of single-nucleotide polymorphisms (SNPs) or genes, thereby overlooking many network-associated phenotypic determinates. Such a problem motivates us to recognize the network-based quantitative trait loci (QTL), i.e., network QTL (nQTL), which is to detect the cascade association as genotype -> network -> phenotype rather than conventional genotype -> expression -> phenotype in eQTL. Specifically, we develop the nQTL framework on the theory and approach of single-sample networks, which can identify not only network traits (e.g., the gene subnetwork associated with genotype) for analyzing complex biological processes but also network signatures (e.g., the interactive gene biomarker candidates screened from network traits) for characterizing targeted phenotype and corresponding subtypes. Our results show that the nQTL framework can efficiently capture associations between SNPs and network traits (i.e., edge traits) in various simulated data scenarios, compared with traditional eQTL methods. Furthermore, we have carried out nQTL analysis on diverse biological and biomedical datasets. Our analysis is effective in detecting network traits for various biological problems and can discover many network signatures for discriminating phenotypes, which can help interpret the influence of nQTL on disease subtyping, disease prognosis, drug response, and pathogen factor association. Particularly, in contrast to the conventional approaches, the nQTL framework could also identify many network traits from human bulk expression data, validated by matched single-cell RNA-seq data in an independent or unsupervised manner. All these results strongly support that nQTL and its detection framework can simultaneously explore the global genotype-network-phenotype associations and the underlying network traits or network signatures with functional impact and importance.
引用
收藏
页数:20
相关论文
共 100 条
[2]   SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis [J].
Aguirre-Gamboa, Raul ;
Gomez-Rueda, Hugo ;
Martinez-Ledesma, Emmanuel ;
Martinez-Torteya, Antonio ;
Chacolla-Huaringa, Rafael ;
Rodriguez-Barrientos, Alberto ;
Tamez-Pena, Jose G. ;
Trevino, Victor .
PLOS ONE, 2013, 8 (09)
[3]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[4]   Impact of Thawing on RNA Integrity and Gene Expression Analysis in Fresh Frozen Tissue [J].
Botling, Johan ;
Edlund, Karolina ;
Segersten, Ulrika ;
Tahmasebpoor, Simin ;
Engstrom, Mats ;
Sundstrom, Magnus ;
Malmstrom, Per-Uno ;
Micke, Patrick .
DIAGNOSTIC MOLECULAR PATHOLOGY, 2009, 18 (01) :44-52
[5]   Molecular pathology of non-small-cell lung cancer [J].
Breuer, RHJ ;
Postmus, PE ;
Smit, EF .
RESPIRATION, 2005, 72 (03) :313-330
[6]   Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci [J].
Budach, Stefan ;
Heinig, Matthias ;
Marsico, Annalisa .
GENETICS, 2016, 203 (04) :1629-+
[7]   Mapping human cell phenotypes to genotypes with single-cell genomics [J].
Camp, J. Gray ;
Platt, Randall ;
Treutlein, Barbara .
SCIENCE, 2019, 365 (6460) :1401-+
[8]   Considering dependence among genes and markers for false discovery control in eQTL mapping [J].
Chen, Liang ;
Tong, Tiejun ;
Zhao, Hongyu .
BIOINFORMATICS, 2008, 24 (18) :2015-2022
[9]   Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations [J].
Chen, Ming-Huei ;
Raffield, Laura M. ;
Mousas, Abdou ;
Sakaue, Saori ;
Huffman, Jennifer E. ;
Moscati, Arden ;
Trivedi, Bhavi ;
Jiang, Tao ;
Akbari, Parsa ;
Vuckovic, Dragana ;
Bao, Erik L. ;
Zhong, Xue ;
Manansala, Regina ;
Laplante, Veronique ;
Chen, Minhui ;
Lo, Ken Sin ;
Qian, Huijun ;
Lareau, Caleb A. ;
Beaudoin, Melissa ;
Hunt, Karen A. ;
Akiyama, Masato ;
Bartz, Traci M. ;
Ben-Shlomo, Yoav ;
Beswick, Andrew ;
Bork-Jensen, Jette ;
Bottinger, Erwin P. ;
Brody, Jennifer A. ;
van Rooij, Frank J. A. ;
Chitrala, Kumaraswamynaidu ;
Cho, Kelly ;
Choquet, Helene ;
Correa, Adolfo ;
Danesh, John ;
Di Angelantonio, Emanuele ;
Dimou, Niki ;
Ding, Jingzhong ;
Elliott, Paul ;
Esko, Tonu ;
Evans, Michele K. ;
Floyd, James S. ;
Broer, Linda ;
Grarup, Niels ;
Guo, Michael H. ;
Greinacher, Andreas ;
Haessler, Jeff ;
Hansen, Torben ;
Howson, Joanna M. M. ;
Huang, Qin Qin ;
Huang, Wei ;
Jorgenson, Eric .
CELL, 2020, 182 (05) :1198-+
[10]   Sparse regression models for unraveling group and individual associations in eQTL mapping [J].
Cheng, Wei ;
Shi, Yu ;
Zhang, Xiang ;
Wang, Wei .
BMC BIOINFORMATICS, 2016, 17