Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer

被引:461
|
作者
Huang, H. W. [1 ]
Wang, Z. B. [1 ]
Lu, J. [2 ]
Lu, K. [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient nanostructures; Surface mechanical rolling treatment; AISI 316L stainless steel; Fatigue; Strain localization; HIGH-CYCLE FATIGUE; MECHANICAL ATTRITION TREATMENT; SEVERE PLASTIC-DEFORMATION; INDUCED RESIDUAL-STRESSES; NANOCRYSTALLINE METALS; GRINDING TREATMENT; GRAINED COPPER; ALLOY; RESISTANCE; STABILITY;
D O I
10.1016/j.actamat.2014.12.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By means of surface mechanical rolling treatment (SMRT), a gradient nanostructured (GNS) surface layer was formed on AISI 316L stainless steel. The mean grain size is similar to 30 nm in the topmost surface layer and increases with depth. Tension compression fatigue measurements were performed on the SMRT sample under the stress-controlled mode. In comparison with the coarse-grained sample, the fatigue strength of the SMRT sample is significantly enhanced in both the low- and high-cycling fatigue regimes. Meanwhile, the fatigue ratio is evidently elevated with an increasing tensile strength in the SMRT sample. The initiation and growth of cracks, the cyclic deformation behaviors, as well as effects of strength and residual stresses, have been investigated to clarify the fatigue mechanism of the SMRT sample. The results emphasized the GNS surface layer enhances the fatigue property by suppressing the initiation of cracks and accommodating a remarkable cyclic plastic strain amplitude. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 160
页数:11
相关论文
共 50 条
  • [41] Electrolyte Effect on the Surface Roughness Obtained by Electropolishing of AISI 316L Stainless Steel
    Nunez Lopez, P. J.
    Garcia Plaza, E.
    Hernando Prada, M.
    Trujillo Coronel, R.
    ADVANCES IN MATERIALS PROCESSING TECHNOLOGIES-MESIC V, 2014, 797 : 133 - 138
  • [42] Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings
    Wang, L.
    Zhao, X.
    Ding, M. H.
    Zheng, H.
    Zhang, H. S.
    Zhang, B.
    Li, X. Q.
    Wu, G. Y.
    APPLIED SURFACE SCIENCE, 2015, 340 : 113 - 119
  • [43] Hydrogen-assisted fatigue crack growth of AISI 316L stainless steel weld
    Tsay, L. W.
    Chen, J. J.
    Huang, J. C.
    CORROSION SCIENCE, 2008, 50 (11) : 2973 - 2980
  • [44] Corrosion behavior of AISI 316L stainless steel surface-modified with NiTi
    Chiu, KY
    Cheng, FT
    Man, HC
    SURFACE & COATINGS TECHNOLOGY, 2006, 200 (20-21): : 6054 - 6061
  • [45] Nanoscale surface modification of AISI 316L stainless steel by severe shot peening
    Bagherifard, Sara
    Slawik, Sebastian
    Fernandez-Pariente, Ines
    Pauly, Christoph
    Muecklich, Frank
    Guagliano, Mario
    MATERIALS & DESIGN, 2016, 102 : 68 - 77
  • [46] Study of boriding surface treatment in the tribological behavior of an AISI 316L stainless steel
    Arteaga-Hernandez, L.A.
    Cuao-Moreu, C.A.
    Gonzalez-Rivera, C.E.
    Alvarez-Vera, M.
    Ortega-Saenz, J.A.
    Hernandez-Rodriguez, M.A.L.
    Wear, 2021, 477
  • [47] Comparative study of wear mechanism of surface treated AISI 316L stainless steel
    Dogan, H
    Findik, F
    Oztarhan, A
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2003, 55 (2-3) : 76 - 83
  • [48] Fatigue crack growth in 316L stainless steel
    Wheatley, G
    Niefanger, R
    Estrin, Y
    Hu, XZ
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 631 - 636
  • [49] Corrosion Behaviour and Bioactivity of a Laser Surface Melted AISI 316L Stainless Steel
    Kumar, A.
    Roy, S. K.
    Pityana, S.
    Majumdar, J. Dutta
    LASERS IN ENGINEERING, 2015, 30 (1-2) : 31 - 49
  • [50] Study of boriding surface treatment in the tribological behavior of an AISI 316L stainless steel
    Arteaga-Hernandez, L. A.
    Cuao-Moreu, C. A.
    Gonzalez-Rivera, C. E.
    Alvarez-Vera, M.
    Ortega-Saenz, J. A.
    Hernandez-Rodriguez, M. A. L.
    WEAR, 2021, 477