Exact solutions to a nonlinearly dispersive Schrodinger equation

被引:32
作者
Geng, Yixiang [1 ,2 ]
Li, Jibin [1 ]
机构
[1] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Peoples R China
[2] Qujing Normal Univ, Dept Math, Qujing 655000, Peoples R China
基金
中国国家自然科学基金;
关键词
solitary patterns; periodic patterns; compactons; breather solutions; theory of bifurcation; nonlinearly dispersive Schrodinger equation;
D O I
10.1016/j.amc.2007.04.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the theory of dynamical systems to a nonlinearly dispersive Schrodinger equation, the existence of solitary patterns, compactons, smooth and non-smooth periodic patterns and breather solutions is obtained. Under different Parametric conditions, various sufficient conditions to guarantee existence of the above solutions are given. In some simple conditions, exact explicit and implicit parametric representations of solutions are given. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:420 / 439
页数:20
相关论文
共 11 条
[1]  
Foss Atle, AQUACULTURE, V256, P255, DOI [10.1016/j.aquaculture.2006.02.032, DOI 10.1016/J.AQUACULTURE.2006.02.032]
[2]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[3]   Explicit and exact travelling wave solutions for the generalized derivative Schrodinger equation [J].
Huang, Ding-jiang ;
Li, De-sheng ;
Zhang, Hong-qing .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :586-593
[4]   Extended tanh-function method and reduction of nonlinear Schrodinger-type equations to a quadrature [J].
Ibrahim, R. S. ;
El-Kalaawy, O. H. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :1001-1008
[5]   Bifurcations of traveling wave solutions for four classes of nonlinear wave equations [J].
Li, JB ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (12) :3973-3998
[6]   Bifurcations of traveling wave and breather solutions of a general class of nonlinear wave equations [J].
Li, JB ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (09) :2913-2926
[7]   Bounded travelling wave solutions for the (n+1)-dimensional sine- and sinh-Gordon equations [J].
Li, JB ;
Li, M .
CHAOS SOLITONS & FRACTALS, 2005, 25 (05) :1037-1047
[8]   Traveling wave solutions for a class of nonlinear dispersive equations [J].
Li, JB ;
Liu, ZR .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (03) :397-418
[9]  
Perko L., 2013, DIFFER EQUAT DYN SYS
[10]  
Solovyev Y, 1997, ELLIPTIC FUNCTIONS E