Tracing Organic Footprints from Industrial Effluent Discharge in Recalcitrant Riverine Chromophoric Dissolved Organic Matter

被引:42
作者
Borisover, Mikhail [1 ]
Laor, Yael [2 ]
Saadi, Ibrahim [2 ]
Lado, Marcos [3 ]
Bukhanovsky, Nadezhda [1 ]
机构
[1] Agr Res Org, Volcani Ctr, Inst Soil Water & Environm Sci, IL-50250 Bet Dagan, Israel
[2] Agr Res Org, Newe Yaar Res Ctr, Inst Soil Water & Environm Sci, IL-30095 Ramat Yishay, Israel
[3] Univ A Coruna, Area Soil Sci, Fac Sci, La Coruna 15071, Spain
关键词
CDOM; Industrial effluent; Biodegradation; River pollution; EEM; PARAFAC; EXCITATION-EMISSION MATRIX; FLUORESCENCE EXCITATION; KISHON RIVER; DOM; WATER; MARINE; BIODEGRADABILITY; CONTAMINATION; SUBSTANCES; POLLUTION;
D O I
10.1007/s11270-011-0821-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Excitation-emission matrix fluorescence spectroscopy, combined with parallel factor analysis and measurements of UV absorption and dissolved organic carbon (DOC) concentrations, was used to trace the footprints of industrial effluents discharged into the lower Kishon River (Israel). The lower Kishon River typifies streams that are affected by seawater tidal intrusion and represents an extreme case of severe long-term pollution caused mainly by a variety of industrial effluents. The industrial effluents may contribute about 90%, in terms of biochemical oxygen demand, of the total organic carbon discharged into the lower Kishon River. Water samples were collected along the river, including the points of effluent discharge from industrial plants, between November 2005 and September 2006. Two types of fluorescent components characterized the fluorescence of the lower Kishon River water: component I corresponded to humic-like matter and component II spectrally resembled material known to be associated with biological productivity, but different from typical tryptophan-like fluorophore. These fluorescent components and other substances that absorbed light at 254 nm contributed to the DOC pool that resisted riverine microbial degradation under laboratory conditions, and that constitutes up to 70% of the overall riverine DOC. The variations in DOC concentration, absorbance at 254 nm, and concentration of humic-like matter (characterized by component I) correlated with the distance from the sea and the water electrical conductivity, and were linked to seawater tidal intrusion. The increased concentration of component II, as well as its enlarged fraction in the overall riverine DOC pool, was found to be associated with the location of major inputs of the industrial effluents. These findings support the use of this fluorescent component as an indicator of industrial pollution in such severely contaminated riverine systems.
引用
收藏
页码:255 / 269
页数:15
相关论文
共 47 条
[1]   Practical aspects of PARAFAC modeling of fluorescence excitation-emission data [J].
Andersen, CM ;
Bro, R .
JOURNAL OF CHEMOMETRICS, 2003, 17 (04) :200-215
[2]   The N-way Toolbox for MATLAB [J].
Andersson, CA ;
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (01) :1-4
[3]   Fluorescence tracing of diffuse landfill leachate contamination in rivers [J].
Baker, A .
WATER AIR AND SOIL POLLUTION, 2005, 163 (1-4) :229-244
[4]   Protein-like fluorescence intensity as a possible tool for determining river water quality [J].
Baker, A ;
Inverarity, R .
HYDROLOGICAL PROCESSES, 2004, 18 (15) :2927-2945
[5]   Fluorescence of leachates from three contrasting landfills [J].
Baker, A ;
Curry, M .
WATER RESEARCH, 2004, 38 (10) :2605-2613
[6]   Fluorescence excitation - Emission matrix characterization of river waters impacted by a tissue mill effluent [J].
Baker, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (07) :1377-1382
[7]   Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers [J].
Baker, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (05) :948-953
[8]   Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin [J].
Borisover, Mikhail ;
Laor, Yael ;
Parparov, Arkady ;
Bukhanovsky, Nadezhda ;
Lado, Marcos .
WATER RESEARCH, 2009, 43 (12) :3104-3116
[9]   PARAFAC. Tutorial and applications [J].
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 38 (02) :149-171
[10]   Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J].
Chen, W ;
Westerhoff, P ;
Leenheer, JA ;
Booksh, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (24) :5701-5710