Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid

被引:46
作者
Bartolomei, V. [1 ]
Gomez Alvarez, E. [1 ]
Wittmer, J. [2 ]
Tlili, S. [1 ]
Strekowski, R. [1 ]
Temime-Roussel, B. [1 ]
Quivet, E. [1 ]
Wortham, H. [1 ]
Zetzsch, C. [2 ]
Kleffmann, J. [3 ]
Gligorovski, S. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Lab Chim Environm, F-13331 Marseille, France
[2] Univ Bayreuth, Forsch Stelle Atmosphar Chem, D-95448 Bayreuth, Germany
[3] Berg Univ Wuppertal, Phys & Theoret Chem FB C, D-42119 Wuppertal, Germany
关键词
NO2 HETEROGENEOUS REACTIONS; ATMOSPHERIC CONDITIONS; ORGANIC-COMPOUNDS; HUMIC-ACID; HONO; AIR; DIOXIDE; SOOT; OH; FREQUENCIES;
D O I
10.1021/acs.est.5b01905
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydroxyl radicals (OH) are known to control the oxidative capacity of the atmosphere but then influence on reactivity within indoor environments is believed to be of little importance: Atmospheric direct sources of OH include the photolysis of ozone and nitrous acid (HONO) and the ozonolysis of alkenes. It has been argued that the ultraviolet light fraction of the solar spectrum is largely attenuated within indoor environments, thus, limiting the extent of photolytic OH sources. Conversely, the ozonolysis of alkenes has been suggested as the main pathway of OH formation within indoor settings. According to this hypothesis the indoor OH radical concentrations span in the range of only 104 to 108 cm(-3). However, recent direct OH radical measurements within a, school classroom yielded OH radical peak values at moderate light intensity measured at evenings of 1.8 x 106 cm(-3) that Were attributed to the photolysis of HONa In this 'work, we report results from chamber experiments irradiated with varying light intensities in order to mimic realistic indoor lighting conditions. The exhaust of a burning candle was introduced in the chamber as a typical indoor source causing a sharp peak of HONO, but also of nitrogen oxides (NOx). The photolysis of HONO yields peak OH concentration values, that for the range of indoors lightning conditions were estimated in the range 5:7 X 10(6) to 1.6 x 107 cm(-3). Excellent agreement exists between OH levels determined by a chemical clock and those calculated by a simple PSS model. These findings suggest that significant OH reactivity takes place at our dwellings and the consequences of this reactivity that is, formation of secondary oxidants ought to be studied hereafter.
引用
收藏
页码:6599 / 6607
页数:9
相关论文
共 56 条
[1]   Heterogeneous production of nitrous acid on soot in polluted air masses [J].
Ammann, M ;
Kalberer, M ;
Jost, DT ;
Tobler, L ;
Rössler, E ;
Piguet, D ;
Gäggeler, HW ;
Baltensperger, U .
NATURE, 1998, 395 (6698) :157-160
[2]   Heterogeneous reaction of NO2 on diesel soot particles [J].
Arens, F ;
Gutzwiller, L ;
Baltensperger, U ;
Gäggeler, HW ;
Ammann, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (11) :2191-2199
[3]  
Atkinson R., IDENTIFICATION ATMOS
[4]  
Atkinson R., 2001, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric ChemistryWeb Version December 2001, P1
[5]   OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber [J].
Barmet, P. ;
Dommen, J. ;
DeCarlo, P. F. ;
Tritscher, T. ;
Praplan, A. P. ;
Platt, S. M. ;
Prevot, A. S. H. ;
Donahue, N. M. ;
Baltensperger, U. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (03) :647-656
[6]   Formation of indoor nitrous acid (HONO) by light-induced NO2 heterogeneous reactions with white wall paint [J].
Bartolomei, Vincent ;
Soergel, Matthias ;
Gligorovski, Sasho ;
Gomez Alvarez, Elena ;
Gandolfo, Adrien ;
Strekowski, Rafal ;
Quivet, Etienne ;
Held, Andreas ;
Zetzsch, Cornelius ;
Wortham, Henri .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (15) :9259-9269
[7]   Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR [J].
Bohn, B ;
Rohrer, F ;
Brauers, T ;
Wahner, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :493-503
[8]   Rate constants of HO2+NO covering atmospheric conditions .1. HO2 formed by OH+H2O2 [J].
Bohn, B ;
Zetzsch, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (08) :1488-1493
[9]   MEASUREMENTS OF NITROUS-ACID INSIDE 2 RESEARCH HOUSES [J].
BRAUER, M ;
RYAN, PB ;
SUH, HH ;
KOUTRAKIS, P ;
SPENGLER, JD ;
LESLIE, NP ;
BILLICK, IH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1990, 24 (10) :1521-1527
[10]   CONCENTRATIONS OF VOLATILE ORGANIC-COMPOUNDS IN INDOOR AIR - A REVIEW [J].
BROWN, SK ;
SIM, MR ;
ABRAMSON, MJ ;
GRAY, CN .
INDOOR AIR-INTERNATIONAL JOURNAL OF INDOOR AIR QUALITY AND CLIMATE, 1994, 4 (02) :123-134