Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China

被引:144
|
作者
Rui, Yichao [1 ,2 ,3 ]
Wang, Shiping [4 ]
Xu, Zhihong [2 ,3 ]
Wang, Yanfen [1 ]
Chen, Chengrong [2 ,3 ]
Zhou, Xiaoqi [2 ,3 ]
Kang, Xiaoming [1 ]
Lu, Shunbao [2 ,3 ]
Hu, Yigang [6 ]
Lin, Qiaoyan [5 ]
Luo, Caiyun [5 ]
机构
[1] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[2] Griffith Univ, Environm Futures Ctr, Brisbane, Qld 4111, Australia
[3] Griffith Univ, Sch Biomol & Phys Sci, Brisbane, Qld 4111, Australia
[4] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China
[5] Chinese Acad Sci, Key Lab Adaptat & Evolut Plateau Biota, NW Inst Plateau Biol, Xining 810008, Peoples R China
[6] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
基金
澳大利亚研究理事会;
关键词
Alpine meadow; Carbon cycling; Grazing; Nitrogen cycling; Warming; HOOP PINE PLANTATIONS; SOLUBLE ORGANIC NITROGEN; SIMULATED CLIMATE-CHANGE; LITTER MASS-LOSS; MICROBIAL BIOMASS; ISOTOPE DISCRIMINATION; RESIDUE MANAGEMENT; TALLGRASS PRAIRIE; EXTRACTION METHOD; HARVEST RESIDUES;
D O I
10.1007/s11368-011-0388-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Small but highly bioactive labile carbon (C) and nitrogen (N) pools are of great importance in controlling terrestrial C and N fluxes, whilst long-term C and N storage is determined by less labile but relatively large sizes of C and N pools. Little information is available about the effects of global warming and grazing on different forms of C and N pools in the Qinghai-Tibet Plateau of China. The aim of this study was to investigate the effects of warming and grazing on the sizes of different soil labile C and N pools and N transformation in this region. A free-air temperature enhancement system in a controlled warming-grazing experiment had been implemented since May 2006. Infrared heaters were used to manipulate temperature, and a moderate grazing intensity was simulated by Tibetan sheep. After 3 years' warming, soil samples were taken from the four treatment plots: no warming with no grazing; no warming with grazing; warming with no grazing; and warming with grazing. Concentrations of inorganic N in the 40-cm soil profiles were measured by a flow injection analyser. Microbial biomass C (MBC) and microbial biomass N (MBN) were measured by the fumigation-extraction method, and soluble organic C (SOC) and soluble organic N (SON) were determined by high-temperature catalytic oxidation. Total N (TN), C isotope composition (delta C-13) and N isotope composition (delta N-15) were determined using an isotope ratio mass spectrometer. Net N transformation under low temperature was studied in a laboratory incubation experiment. Warming and grazing treatments affected soil C and N pools differently, and these effects varied with soil depth. Warming significantly increased TN, MBC, MBN, and SON and decreased delta C-13 at the 10-20 and 20-30 cm soil depths, whilst grazing generally decreased SON at the 10-20 and 20-30 cm, and MBC at 20-30 cm. At the 0-10 cm depth, neither warming nor grazing alone affects these soil parameters significantly, indicating that there could be considerable perturbation on the soil surface. However, grazing alone increased NO (3) (-) -N, total inorganic N, SOC and delta N-15 at the 0-10 cm depth. Incubated at 4A degrees C, warming (particularly with grazing) led to net immobilization of N, but no-warming treatments led to net N mineralization, whilst nitrification was strong across all these treatments. Correlations between MBC and SOC, and TN and MBN or SON were positive. However, SON was less well correlated with TN and MBN compared with the highly positive correlations between SOC and MBC. It is clearly demonstrated that warming and grazing affected labile C and N pools significantly, but differently after 3 years' treatments: Warming tended to enlarge labile C and N pools through increased litter inputs, whilst grazing tended to increase inorganic N pools, decrease SON and accelerate N cycling. Grazing might modify the mode that warming affected soil C and N pools through its strong impacts on microbial processes and N cycling. These results suggested that interactive effects of warming and grazing on C and N pools might have significant implications for the long-term C and N storage and productivity of alpine meadow ecosystem in the Qinghai-Tibet Plateau of China.
引用
收藏
页码:903 / 914
页数:12
相关论文
共 50 条
  • [21] Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai-Tibet plateau
    Yang, Chuntao
    Zhang, Yan
    Hou, Fujiang
    Millner, James Peter
    Wang, Zhaofeng
    Chang, Shenghua
    PLANT AND SOIL, 2019, 444 (1-2) : 239 - 250
  • [22] Soil aggregate size influences the impact of inorganic nitrogen deposition on soil nitrification in an alpine meadow of the Qinghai-Tibet Plateau
    Li, Jingjing
    Yang, Chao
    Liu, Xiaoli
    Ji, Hanzhong
    Shao, Xinqing
    PEERJ, 2020, 8
  • [23] Warming intensified the effects of nitrogen addition on N2O emissions from alpine meadow in the northern Qinghai-Tibet Plateau
    Li, Ming-Jie
    Ge, Yi-Qing
    Ganjurjav, Hasbagan
    Hu, Guo-Zheng
    Wu, Hong-Bao
    Yan, Jun
    He, Shi-Cheng
    Gao, Qing-Zhu
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2024, 15 (01): : 101 - 112
  • [24] Grazing rest versus no grazing stimulates soil inorganic N turnover in the alpine grasslands of the Qinghai-Tibet plateau
    Lang, Man
    Li, Ping
    Long, Guangqiang
    Yuan, Fujin
    Yu, Yongjie
    Ma, Erdeng
    Shan, Jun
    Mueller, Christoph
    Zhu, Tongbin
    CATENA, 2021, 204
  • [25] Precipitation and seasonality affect grazing impacts on herbage nutritive values in alpine meadows on the Qinghai-Tibet Plateau
    Yao, Xixi
    Wu, Jianping
    Gong, Xuyin
    JOURNAL OF PLANT ECOLOGY, 2019, 12 (06) : 993 - 1008
  • [26] Effects of Simulated Nitrogen Deposition on Soil Active Carbon Fractions in a Wet Meadow in the Qinghai-Tibet Plateau
    Wang, Haiyan
    Wu, Jiangqi
    Li, Guang
    Yan, Lijuan
    Wei, Xingxing
    Ma, Weiwei
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2022, 22 (03) : 2943 - 2954
  • [27] Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau
    Liu, Chenli
    Li, Wenlong
    Xu, Jing
    Wei, Wei
    Xue, Pengfei
    Yan, Hepiao
    SOIL & TILLAGE RESEARCH, 2021, 206
  • [28] Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China
    Wang, Xuexia
    Dong, Shikui
    Gao, Qingzhu
    Zhou, Huakun
    Liu, Shiliang
    Su, Xukun
    Li, Yuanyuan
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 76 : 140 - 142
  • [29] Soil microbial diversity and composition response to degradation of the alpine meadow in the southeastern Qinghai-Tibet Plateau
    Mingfang Jiang
    Jiayi Liu
    Haoran Sun
    Qiubei Chen
    Hong Jin
    Jingyan Yang
    Ke Tao
    Environmental Science and Pollution Research, 2024, 31 : 26076 - 26088
  • [30] The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau
    WenYing Wang
    YongGui Ma
    Jin Xu
    HuiChun Wang
    JinFu Zhu
    HuaKun Zhou
    Science China Earth Sciences, 2012, 55 : 1688 - 1695