SOLITONS AND GEOMETRICAL STRUCTURES IN A PERFECT FLUID SPACETIME

被引:95
作者
Blaga, Adara M. [1 ]
机构
[1] West Univ Timisoara, Timisoara, Romania
关键词
Ricci soliton; Einstein soliton; perfect fluid; Lorentz space;
D O I
10.1216/rmj.2020.50.41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometrical aspects of a perfect fluid spacetime are described in terms of different curvature tensors and eta-Ricci and eta-Einstein solitons in a perfect fluid spacetime are determined. Conditions for the Ricci soliton to be steady, expanding or shrinking are also given. In a particular case when the potential vector field xi of the soliton is of gradient type, xi := grad( f), we derive a Poisson equation from the soliton equation.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 15 条
[1]  
ADATI T, 1967, TENSOR, V18, P348
[2]   Curvature tensor for the spacetime of general relativity [J].
Ahsan, Zafar ;
Ali, Musavvir .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (05)
[3]  
[Anonymous], 2001, SOOCHOW J MATH
[4]   Gradient Einstein solitons [J].
Catino, Giovanni ;
Mazzieri, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :66-94
[5]  
Chaki MC, 2000, PUBL MATH-DEBRECEN, V57, P297
[6]   RICCI SOLITONS AND REAL HYPERSURFACES IN A COMPLEX SPACE FORM [J].
Cho, Jong Taek ;
Kimura, Makoto .
TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (02) :205-212
[7]  
Chow B., 2006, J AM MATH SOC, V77
[8]  
De U.C., 2005, P INT C MATH ITS APP, P178
[9]  
De U. C., 2004, PERIOD MATH HUNG, V48, P223, DOI [10.1023/B:MAHU.0000038977.94711.ab, DOI 10.1023/B:MAHU.0000038977.94711.AB]
[10]  
Hamilton R S., 1988, Am. Math. Soc, V71, P237, DOI [10.1090/conm/071/954419, DOI 10.1090/CONM/071/954419]