Bubbling Calabi-Yau geometry from matrix models

被引:13
作者
Halmagyi, Nick [1 ]
Okuda, Takuya [2 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2008年 / 03期
基金
美国国家科学基金会;
关键词
Chern-Simons theories; topological strings; gauge-gravity correspondence;
D O I
10.1088/1126-6708/2008/03/028
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study bubbling geometry in topological string theory. Specifically, we analyse Chern-Simons theory on both the 3-sphere and lens spaces in the presence of a Wilson loop of an arbitrary representation. For each three manifold, we formulate a multimatrix model whose partition function is the Wilson loop vev and compute the spectral curve. This spectral curve is closely related to the Calabi-Yau threefold which is the gravitational dual of the Wilson loop. Namely, it is the reduction to two dimensions of the mirror to the Calabi-Yau. For lens spaces the dual geometries are new. We comment on a similar matrix model relevant for Wilson loops in AdS/CFT.
引用
收藏
页数:27
相关论文
共 32 条
  • [1] All loop topological string amplitudes from Chern-Simons theory
    Aganagic, M
    Mariño, M
    Vafa, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (02) : 467 - 512
  • [2] Aganagic M, 2004, J HIGH ENERGY PHYS
  • [3] [Anonymous], HEPTH0002222
  • [4] Beasley C, 2005, J DIFFER GEOM, V70, P183
  • [5] Berenstein D, 2004, J HIGH ENERGY PHYS
  • [6] BOUCHARD V, ARXIV07091453
  • [7] Gravity duals of half-BPS Wilson loops
    D'Hoker, Eric
    Estes, John
    Gutperle, Michael
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06):
  • [8] DIACONESCU DE, 2003, ADV THEOR MATH PHYS, V6, P619
  • [9] Matrix models, topological strings, and supersymmetric gauge theories
    Dijkgraaf, R
    Vafa, C
    [J]. NUCLEAR PHYSICS B, 2002, 644 (1-2) : 3 - 20
  • [10] Chern-Simons matrix models and Stieltjes-Wigert polynomials
    Dolivet, Yacine
    Tierz, Miguel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)