Highly Stable Single-Atom Catalyst with Ionic Pd Active Sites Supported on N-Doped Carbon Nanotubes for Formic Acid Decomposition

被引:102
|
作者
Podyacheva, Olga Y. [1 ,2 ]
Bulushev, Dmitri A. [1 ,2 ]
Suboch, Arina N. [1 ]
Svintsitskiy, Dmitry A. [1 ,2 ]
Lisitsyn, Alexander S. [1 ]
Modin, Evgeny [3 ]
Chuvilin, Andrey [3 ,4 ]
Gerasimov, Evgeny Y. [1 ,2 ]
Sobolev, Vladimir I. [1 ]
Parmon, Valentin N. [1 ,2 ]
机构
[1] RAS, Boreskov Inst Catalysis SB, Pr Lavrentieva 5, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia
[3] CIC NanoGUNE, Donostia San Sebastian 20018, Spain
[4] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
基金
俄罗斯科学基金会;
关键词
carbon nanotubes; doping; formic acid; palladium; single-atom catalyst; ELECTRICAL-CONDUCTIVITY; HETEROGENEOUS CATALYSIS; HYDROGEN-PRODUCTION; CAPACITY PROPERTIES; NITROGEN; NANOFIBERS; METAL; NANOPARTICLES; DEHYDROGENATION; CONSEQUENCES;
D O I
10.1002/cssc.201801679
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts with ionic Pd active sites supported on nitrogen-doped carbon nanotubes have been synthesized with a palladium content of 0.2-0.5 wt %. The Pd sites exhibited unexpectedly high stability up to 500 degrees C in a hydrogen atmosphere which was explained by coordination of the Pd ions by nitrogen-containing fragments of graphene layers. The active sites showed a high rate of gas-phase formic acid decomposition yielding hydrogen. An increase in Pd content was accompanied by the formation of metallic nanoparticles with a size of 1.2-1.4 nm and by a decrease in the catalytic activity. The high stability of the single-atom Pd sites opens possibilities for using such catalysts in high-temperature reactions.
引用
收藏
页码:3724 / 3727
页数:4
相关论文
共 50 条
  • [21] Transition metal single-atom embedded on N-doped carbon as a catalyst for peroxymonosulfate activation: A DFT study
    Hu, Jiahui
    Li, Yin
    Zou, Yubin
    Lin, Lin
    Li, Bing
    Li, Xiao-yan
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [22] A highly active carbon-supported PdSn catalyst for formic acid electrooxidation
    Tu, Dandan
    Wu, Bing
    Wang, Bingxing
    Deng, Chao
    Gao, Ying
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 103 (1-2) : 163 - 168
  • [23] Highly active carbon-supported PdNi catalyst for formic acid electrooxidation
    Gao, Yanwei
    Wang, Gang
    Wu, Bing
    Deng, Chao
    Gao, Ying
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (01) : 1 - 6
  • [24] Highly active carbon-supported PdNi catalyst for formic acid electrooxidation
    Yanwei Gao
    Gang Wang
    Bing Wu
    Chao Deng
    Ying Gao
    Journal of Applied Electrochemistry, 2011, 41 : 1 - 6
  • [25] Formic acid oxidation by iridium single-atom catalysts on nitrogen-doped carbon
    Zhou, Huang
    Wu, Yuen
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (09) : 1171 - 1172
  • [26] Self-Organized Single-Atom Tungsten Supported on the N-Doped Carbon Matrix for Durable Oxygen Reduction
    Bisen, Omeshwari Y.
    Yadav, Ashok Kumar
    Nanda, Karuna Kar
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (39) : 43586 - 43595
  • [27] Formic acid oxidation by iridium single-atom catalysts on nitrogen-doped carbon
    Huang Zhou
    Yuen Wu
    Science China Chemistry, 2020, 63 : 1171 - 1172
  • [28] First-Principles Study on the Mechanism of Nitrobenzene Reduction to Aniline Catalyzed by a N-Doped Carbon-Supported Cobalt Single-Atom Catalyst
    Wang, Haohao
    Zhang, Wei
    Liu, Yangqiu
    Pu, Min
    Lei, Ming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (35): : 19171 - 19182
  • [29] Hollow N-doped carbon spheres with anchored single-atom Fe sites for efficient electrocatalytic oxygen reduction
    Wang, Min-Min
    Feng, Chao
    Liu, Yun-Qi
    Pan, Yuan
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (05): : 581 - 588
  • [30] Highly Stable N-Doped Carbon-Supported Pd-Based Catalysts Prepared from Biomass Waste for H2 Production from Formic Acid
    Chaparro-Garnica, Jessica
    Navlani-Garcia, Miriam
    Salinas-Torres, David
    Morallon, Emilia
    Cazorla-Amoros, Diego
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (39) : 15030 - 15043