Asymptotic enumeration of RNA structures with pseudoknots

被引:17
作者
Jin, Emma Y. [1 ]
Reidys, Christian M. [1 ]
机构
[1] Nankai Univ, LPMC TJKLC, Ctr Combinator, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic enumeration; RNA secondary structure; k-noncrossing RNA structure; pseudoknot; generating function; transfer theorem; Hankel contour; singular expansion;
D O I
10.1007/s11538-007-9265-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the asymptotic expansion for the numbers of k-noncrossing RNA structures. Our results are based on the generating function for the number of k-noncrossing RNA pseudoknot structures, S-k(n), derived in Bull. Math. Biol. ( 2008), where k - 1 denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function Sigma S-n >= 0(k)(n)z(n) and obtain for k = 2 and k = 3, the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary k singular expansions exist and via transfer theorems of analytic combinatorics, we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula S-3(n) similar to 10.4724.4!/n(n-1)...(n-4)(5+root 21/2)(n).
引用
收藏
页码:951 / 970
页数:20
相关论文
共 32 条
[1]   Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots [J].
Akutsu, T .
DISCRETE APPLIED MATHEMATICS, 2000, 104 (1-3) :45-62
[2]   AN RNA PSEUDOKNOT AND AN OPTIMAL HEPTAMERIC SHIFT SITE ARE REQUIRED FOR HIGHLY EFFICIENT RIBOSOMAL FRAMESHIFTING ON A RETROVIRAL MESSENGER-RNA [J].
CHAMORRO, M ;
PARKIN, N ;
VARMUS, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (02) :713-717
[3]  
Chen WYC, 2007, T AM MATH SOC, V359, P1555
[4]   Singularity analysis, Hadamard products, and tree recurrences [J].
Fill, JA ;
Flajolet, P ;
Kapur, N .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (02) :271-313
[5]   MELLIN TRANSFORMS AND ASYMPTOTICS - DIGITAL SUMS [J].
FLAJOLET, P ;
GRABNER, P ;
KIRSCHENHOFER, P ;
PRODINGER, H ;
TICHY, RF .
THEORETICAL COMPUTER SCIENCE, 1994, 123 (02) :291-314
[6]   Singularity analysis and asymptotics of Bernoulli sums [J].
Flajolet, P .
THEORETICAL COMPUTER SCIENCE, 1999, 215 (1-2) :371-381
[7]   CENTRAL AND LOCAL LIMIT-THEOREMS APPLIED TO ASYMPTOTIC ENUMERATION-IV - MULTIVARIATE GENERATING-FUNCTIONS [J].
GAO, ZC ;
RICHMOND, LB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 41 (1-2) :177-186
[8]   RANDOM-WALK IN A WEYL CHAMBER [J].
GESSEL, IM ;
ZEILBERGER, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) :27-31
[9]   COMPUTATION OF GENERATING-FUNCTIONS FOR BIOLOGICAL MOLECULES [J].
HOWELL, JA ;
SMITH, TF ;
WATERMAN, MS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (01) :119-133
[10]   Combinatorics of RNA structures with pseudoknots [J].
Jin, Emma Y. ;
Qin, Jing ;
Reidys, Christian M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (01) :45-67