Local rigidity of certain partially hyperbolic actions of product type

被引:0
作者
Nitica, V [1 ]
Török, A [1 ]
机构
[1] Romanian Acad, Inst Math, RO-70700 Bucharest, Romania
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove certain rigidity properties of higher-rank abelian product actions of the type alpha x Id(N) : Z(K) --> Diff(M x N), where alpha is (TNS) (i.e. is hyperbolic and has some special structure of its stable distributions). Together with a result about product actions of property (T) groups, this implies the local rigidity of higher-rank lattice actions of the form alpha x Id(T) : Gamma --> Diff(M x T), provided alpha has some rigidity properties itself, and contains a (TNS) subaction.
引用
收藏
页码:1213 / 1237
页数:25
相关论文
共 50 条
[31]   Local rigidity in quaternionic hyperbolic space [J].
Kim, Inkang ;
Pansu, Pierre .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (06) :1141-1164
[32]   Scalar curvature rigidity of hyperbolic product manifolds [J].
Listing, M .
MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (03) :581-594
[33]   Center foliation rigidity for partially hyperbolic toral diffeomorphisms [J].
Gogolev, Andrey ;
Kalinin, Boris ;
Sadovskaya, Victoria .
MATHEMATISCHE ANNALEN, 2023, 387 (3-4) :1579-1602
[34]   PATHOLOGY AND ASYMMETRY: CENTRALIZER RIGIDITY FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS [J].
Damjanovic, Danijela ;
Wilkinson, Amie ;
Xu, Disheng .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (17) :3815-3890
[35]   Global smooth and topological rigidity of hyperbolic lattice actions [J].
Brown, Aaron ;
Hertz, Federico Rodriguez ;
Wang, Zhiren .
ANNALS OF MATHEMATICS, 2017, 186 (03) :913-972
[36]   Center foliation rigidity for partially hyperbolic toral diffeomorphisms [J].
Andrey Gogolev ;
Boris Kalinin ;
Victoria Sadovskaya .
Mathematische Annalen, 2023, 387 :1579-1602
[37]   Scalar curvature rigidity of hyperbolic product manifolds [J].
Mario Listing .
Mathematische Zeitschrift, 2004, 247 :581-594
[38]   LOCAL RIGIDITY OF CERTAIN ACTIONS OF SOLVABLE GROUPS ON THE BOUNDARIES OF RANK-ONE SYMMETRIC SPACES [J].
Okada, Mao .
JOURNAL OF MODERN DYNAMICS, 2021, 17 :111-143
[39]   Equilibrium states for certain partially hyperbolic attractors* [J].
Fisher, Todd ;
Oliveira, Krerley .
NONLINEARITY, 2020, 33 (07) :3409-3423
[40]   On the Bernoulli property for certain partially hyperbolic diffeomorphisms [J].
Ponce, G. ;
Tahzibi, A. ;
Varao, R. .
ADVANCES IN MATHEMATICS, 2018, 329 :329-360