Statistical modeling of global soil NOx emissions -: art. no. GB3019

被引:82
作者
Yan, XY
Ohara, T
Akimoto, I
机构
[1] Japan Agcy Marine Earth Sci & Technol, Frontier Res Ctr Global Change, Yokohama, Kanagawa 2360001, Japan
[2] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
关键词
D O I
10.1029/2004GB002276
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On the basis of field measurements of NOx emissions from soils, we developed a statistical model to describe the influences of soil organic carbon (SOC) content, soil pH, land-cover type, climate, and nitrogen input on NOx emission. While also considering the effects of soil temperature, soil moisture change-induced pulse emission, and vegetation fire, we simulated NOx emissions from global soils at resolutions of 0.5 degrees and 6 hours. Canopy reduction was included in both data processing and flux simulation. NOx emissions were positively correlated with SOC content and negatively correlated with soil pH. Soils in dry or temperate regions had higher NOx emission potentials than soils in cold or tropical regions. Needleleaf forest and agricultural soils had high NOx emissions. The annual NOx emission from global soils was calculated to be 7.43 Tg N, decreasing to 4.97 Tg N after canopy reduction. Global averages of nitrogen fertilizer-induced emission ratios were 1.16% above soil and 0.70% above canopy. Soil moisture change-induced pulse emission contributed about 4% to global annual NOx emission, and the effect of vegetation fire on soil NOx emission was negligible.
引用
收藏
页码:1 / 15
页数:17
相关论文
共 83 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]  
Akiyama H., 2000, CHEMOSPHERE GLOBAL C, V2, P313, DOI [10.1016/S1465-9972(00)00010-6, DOI 10.1016/S1465-9972(00)00010-6]
[3]   SIMULTANEOUS FIELD-MEASUREMENTS OF BIOGENIC EMISSIONS OF NITRIC-OXIDE AND NITROUS-OXIDE [J].
ANDERSON, IC ;
LEVINE, JS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D1) :965-976
[4]  
Anderson IC, 1998, J ENVIRON QUAL, V27, P1117, DOI 10.2134/jeq1998.00472425002700050017x
[5]  
[Anonymous], 2000, IND AGR BRIEF
[6]  
[Anonymous], FAOSTAT AGR DAT
[7]   EMISSION OF NITRIC-OXIDE (NO) FROM TROPICAL FOREST SOILS AND EXCHANGE OF NO BETWEEN THE FOREST CANOPY AND ATMOSPHERIC BOUNDARY-LAYERS [J].
BAKWIN, PS ;
WOFSY, SC ;
FAN, SM ;
KELLER, M ;
TRUMBORE, SE ;
DACOSTA, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D10) :16755-16764
[8]   MEASUREMENTS OF NOX AND NOY CONCENTRATIONS AND FLUXES OVER ARCTIC TUNDRA [J].
BAKWIN, PS ;
WOFSY, SC ;
FAN, SM ;
FITZJARRALD, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D15) :16545-16557
[9]  
Bouwman AF, 2002, GLOBAL BIOGEOCHEM CY, V16, DOI [10.1029/2001GB001811, 10.1029/2001GB001812]
[10]   EFFECTS OF SOIL-MOISTURE, TEMPERATURE, AND INORGANIC NITROGEN ON NITRIC-OXIDE EMISSIONS FROM ACIDIC TROPICAL SAVANNA SOILS [J].
CARDENAS, L ;
RONDON, A ;
JOHANSSON, C ;
SANHUEZA, E .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D8) :14783-14790