Hyperspectral Anomaly Detection: A Survey

被引:205
作者
Su, Hongjun [1 ]
Wu, Zhaoyue [2 ]
Zhang, Huihui [1 ]
Du, Qian [3 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Peoples R China
[2] Univ Extremadura, Dept Technol Comp & Commun, E-10071 Caceres, Spain
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Anomaly detection; Hyperspectral imaging; Principal component analysis; Testing; Kernel; Real-time systems; Dictionaries; LINEAR DISCRIMINANT-ANALYSIS; LOW-RANK; COLLABORATIVE REPRESENTATION; TARGET DETECTION; SPARSE-REPRESENTATION; DETECTION ALGORITHMS; SUBSPACE MODEL; NEURAL-NETWORK; RX-ALGORITHM; IMAGERY;
D O I
10.1109/MGRS.2021.3105440
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral imagery can obtain hundreds of narrow spectral bands of ground objects. The abundant and detailed spectral information offers a unique diagnostic identification ability for targets of interest. Hyperspectral anomaly detection aims to find targets without prior knowledge, which has attracted attention as a branch of target location. In this article, current hyperspectral anomaly detection methods, anomaly detection performance evaluation techniques, and hyperspectral anomaly detection data sets are widely investigated. Among them, hyperspectral anomaly detection methods can be classified into seven categories: statistic-based, distance-based, reconstruction-based, subspace-based, spatial-spectral-based, deep learning-based, and real-time anomaly detection. The performance of different types of detection methods is also verified with three real hyperspectral data sets. Finally, conclusions about hyperspectral anomaly detection are summarized, and challenges for future research are discussed. © 2013 IEEE.
引用
收藏
页码:64 / 90
页数:27
相关论文
共 131 条
[61]   Hyperspectral Anomaly Detection via Discriminative Feature Learning with Multiple-Dictionary Sparse Representation [J].
Ma, Dandan ;
Yuan, Yuan ;
Wang, Qi .
REMOTE SENSING, 2018, 10 (05)
[62]   Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding [J].
Ma, Li ;
Crawford, Melba M. ;
Tian, Jinwen .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (06) :753-762
[63]  
Ma N, 2018, IEEE IMTC P, P1944
[64]   Detection Algorithms in Hyperspectral Imaging Systems [J].
Manolakis, Dimitris ;
Truslow, Eric ;
Pieper, Michael ;
Cooley, Thomas ;
Brueggeman, Michael .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :24-33
[65]   Analysis and Optimizations of Global and Local Versions of the RX Algorithm for Anomaly Detection in Hyperspectral Data [J].
Manuel Molero, Jose ;
Garzon, Ester M. ;
Garcia, Inmaculada ;
Plaza, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) :801-814
[66]   Subspace based non-parametric approach for hyperspectral anomaly detection in complex scenarios [J].
Matteoli, Stefania ;
Acito, Nicola ;
Diani, Marco ;
Corsini, Giovanni .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
[67]   An Overview of Background Modeling for Detection of Targets and Anomalies in Hyperspectral Remotely Sensed Imagery [J].
Matteoli, Stefania ;
Diani, Marco ;
Theiler, James .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2317-2336
[68]   Models and Methods for Automated Background Density Estimation in Hyperspectral Anomaly Detection [J].
Matteoli, Stefania ;
Veracini, Tiziana ;
Diani, Marco ;
Corsini, Giovanni .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05) :2837-2852
[69]   Hyperspectral Anomaly Detection With Kurtosis-Driven Local Covariance Matrix Corruption Mitigation [J].
Matteoli, Stefania ;
Diani, Marco ;
Corsini, Giovanni .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) :532-536
[70]   A Tutorial Overview of Anomaly Detection in Hyperspectral Images [J].
Matteoli, Stefania ;
Diani, Marco ;
Corsini, Giovanni .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2010, 25 (07) :5-27