Experimental assessment of an active (acoustic) liner prototype in an acoustic flow duct facility

被引:2
|
作者
Billon, K. [1 ]
De Bono, E. [1 ]
Perez, M. [1 ]
Salze, E. [2 ]
Matten, G. [3 ]
Gillet, M. [3 ]
Ouisse, M. [3 ]
Volery, M. [4 ]
Lissek, H. [4 ]
Mardjono, J. [5 ]
Collet, M. [1 ]
机构
[1] Univ Lyon, Ecole Cent Lyon, LTDS, UMR 5513, F-69134 Ecully, France
[2] Univ Lyon, Ecole Cent Lyon, LMFA, UMR 5509, F-69134 Ecully, France
[3] Univ Bourgogne Franche Comte, Dept Appl Mech, FEMTO ST Inst, CNRS UFC ENSMM UTBM, 24 Rue Epitaphe, F-25000 Besancon, France
[4] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS2, Stn 11, CH-1015 Lausanne, Switzerland
[5] Safran Aircraft Engines, F-75015 Paris, France
来源
HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV | 2021年 / 11593卷
基金
欧盟地平线“2020”;
关键词
Active liner; Electroacoustic absorber; Impedance control; Broadband noise reduction; ELECTROACOUSTIC ABSORBERS; IMPEDANCE CONTROL; MODES;
D O I
10.1117/12.2583099
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, experimental results of broadband noise reduction in an acoustic flow duct are presented. An active liner composed of an array of electroacoustic absorbers is used. The control law is based on the pressure-based, current driven digital architecture for impedance control with a local control strategy. A wind tunnel test rig named Caiman has been used for the experimental validation. The results confirm the adaptability and the stability of the whole system with the local control strategy. The air flow slightly reduces the efficiency while maintaining the adaptability and the stability.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] 2D ACTIVE LINER EXPERIMENTAL RESULTS IN ACOUSTIC FLOW DUCT FACILITY
    Billon, Kevin
    Collet, Manuel
    Salze, Edouard
    Gillet, Martin
    Ouisse, Morvan
    Volery, Maxime
    Lissek, Herve
    Mardjono, Jacky
    PROCEEDINGS OF ASME 2022 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS2022, 2022,
  • [2] Hybrid acoustic liner: A new concept for noise reduction in flow duct
    Périsse, J., 1600, S. Hirzel Verlag GmbH (89):
  • [3] Development of Adaptive Acoustic Impedance Control Technologies of Acoustic Duct Liner
    Kobayashi, Hiroshi
    Ozaki, Schunichi
    Yokochi, Makoto
    ADVANCES IN ACOUSTICS AND VIBRATION, 2011, 2011
  • [4] NUMERICAL OPTIMIZATION OF LINER IMPEDANCE IN ACOUSTIC DUCT
    Billon, Kevin
    de Bono, Emanuele
    Perez, Matthias
    Collet, Manuel
    Salze, Edouard
    Matten, Gael
    Ouisse, Morvan
    Volery, Maxime
    Lissek, Herve
    Mardjono, Jacky
    PROCEEDINGS OF THE ASME 2020 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS2020), 2020,
  • [5] Acoustic performance experimental technology of aircraft nacelle acoustic liner
    Yan Q.
    Xue D.
    Gao X.
    Yang J.
    Huang W.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (06):
  • [6] Effect of Liner Characteristics on the Acoustic Performance of Duct Systems
    Othmani, Chokri
    Hentati, Taissir
    Taktak, Mohamed
    Elnady, Tamer
    Fakhfakh, Tahar
    Haddar, Mohamed
    ARCHIVES OF ACOUSTICS, 2015, 40 (01) : 117 - 127
  • [7] Acoustic liner optimization studies by finite duct model
    Yang, Bing
    Wang, Tong-Qing
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2008, 29 (04): : 591 - 594
  • [8] Scattering of acoustic duct modes by axial liner splices
    Tam, Christopher K. W.
    Ju, Hongbin
    Chien, Eugene W.
    JOURNAL OF SOUND AND VIBRATION, 2008, 310 (4-5) : 1014 - 1035
  • [10] NEW METHOD FOR DETERMINING ACOUSTIC-LINER ADMITTANCE IN A RECTANGULAR DUCT WITH GRAZING FLOW FROM EXPERIMENTAL DATA.
    Watson, Willie R.
    NASA Technical Paper, 1984,