Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica

被引:87
作者
Soz, Cagla Kosak [1 ]
Yilgor, Emel [1 ]
Yilgor, Iskender [1 ]
机构
[1] Koc Univ, Dept Chem, KUYTAM Surface Sci & Technol Ctr, Istanbul, Turkey
关键词
Superhydrophobicity; Fumed silica; Surface roughness; CONTACT-ANGLE HYSTERESIS; ULTRAHYDROPHOBIC SURFACES; WATER-REPELLENT; LENGTH SCALES; WETTABILITY; LOTUS; TOPOGRAPHY; TRANSPARENT; FILMS; ADHESION;
D O I
10.1016/j.polymer.2015.02.032
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Formation of superhydrophobic polymer surfaces were investigated through successive spin-coating of hydrophobic fumed silica dispersed in an organic solvent onto polymer films. Two different polymers, a hydrophobic segmented silicone-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) were used as model substrates. Influence of the polymer type and structure, silica concentration and the number of silica layers applied on the topography, average roughness and the wetting behavior of the surfaces were determined. Polymer surfaces obtained were characterized by scanning electron microscopy, white light interferometry, atomic force microscopy and advancing and receding water contact angle measurements. It was possible to obtain superhydrophobic surfaces displaying hierarchical micro/nano features both for TPSC and PMMA. A close correlation was observed between the number of silica layers applied and average surface roughness obtained. It was demonstrated that an average surface roughness value of 125-150 nm was necessary for the formation of superhydrophobic surfaces, both for TPSC and PMMA. Chemical structure and nature of the polymeric substrate seem to play a significant role on the topography and average roughness of the silica coated surfaces formed. Superhydrophobic surfaces displayed static and advancing water contact angles well above 150 degrees and fairly small contact angle hysteresis. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 128
页数:11
相关论文
共 74 条
[1]   Tunable, superhydrophobically stable polymeric surfaces by electrospinning [J].
Acatay, K ;
Simsek, E ;
Ow-Yang, C ;
Menceloglu, YZ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (39) :5210-5213
[2]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[3]   Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces [J].
Bhushan, Bharat ;
Jung, Yong Chae .
NANOTECHNOLOGY, 2006, 17 (11) :2758-2772
[4]   Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].
Bhushan, Bharat ;
Jung, Yong Chae .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) :1-108
[5]   Biomimetics: lessons from nature - an overview [J].
Bhushan, Bharat .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1893) :1445-1486
[6]   Transparent superhydrophobic films based on silica nanoparticles [J].
Bravo, Javier ;
Zhai, Lei ;
Wu, Zhizhong ;
Cohen, Robert E. ;
Rubner, Michael F. .
LANGMUIR, 2007, 23 (13) :7293-7298
[7]   Wetting Characteristics of Insect Wing Surfaces [J].
Byun, Doyoung ;
Hong, Jongin ;
Saputra ;
Ko, Jin Hwan ;
Lee, Young Jong ;
Park, Hoon Cheol ;
Byun, Bong-Kyu ;
Lukes, Jennifer R. .
JOURNAL OF BIONIC ENGINEERING, 2009, 6 (01) :63-70
[8]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[9]   Ultrahydrophobic and ultralyophobic surfaces:: Some comments and examples [J].
Chen, W ;
Fadeev, AY ;
Hsieh, MC ;
Öner, D ;
Youngblood, J ;
McCarthy, TJ .
LANGMUIR, 1999, 15 (10) :3395-3399
[10]   Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating [J].
Deng, Xu ;
Mammen, Lena ;
Butt, Hans-Juergen ;
Vollmer, Doris .
SCIENCE, 2012, 335 (6064) :67-70