Method for universal detection of two-photon polarization entanglement

被引:28
作者
Bartkiewicz, Karol [1 ,2 ,3 ]
Horodecki, Pawel [4 ,5 ]
Lemr, Karel [2 ,3 ]
Miranowicz, Adam [1 ]
Zyczkowski, Karol [6 ,7 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[2] Palacky Univ, RCPTM, Joint Lab Opt, Olomouc 77207, Czech Republic
[3] Acad Sci Czech Republic, Inst Phys, Olomouc 77207, Czech Republic
[4] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80233 Gdansk, Poland
[5] Natl Quantum Informat Ctr Gdansk, PL-81824 Sopot, Poland
[6] Jagiellonian Univ, Inst Phys, PL-30348 Krakow, Poland
[7] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 03期
关键词
QUANTUM; GATES;
D O I
10.1103/PhysRevA.91.032315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.
引用
收藏
页数:7
相关论文
共 43 条
[1]   Measuring multipartite concurrence with a single factorizable observable [J].
Aolita, Leandro ;
Mintert, Florian .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[2]   Universal observable detecting all two-qubit entanglement and determinant-based separability tests [J].
Augusiak, Remigiusz ;
Demianowicz, Maciej ;
Horodecki, Pawel .
PHYSICAL REVIEW A, 2008, 77 (03)
[3]   Experimentally friendly geometrical criteria for entanglement [J].
Badziag, Piotr ;
Brukner, Caslav ;
Laskowski, Wieslaw ;
Paterek, Tomasz ;
Zukowski, Marek .
PHYSICAL REVIEW LETTERS, 2008, 100 (14)
[4]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[5]   Quantifying entanglement of a two-qubit system via measurable and invariant moments of its partially transposed density matrix [J].
Bartkiewicz, Karol ;
Beran, Jiri ;
Lemr, Karel ;
Norek, Michal ;
Miranowicz, Adam .
PHYSICAL REVIEW A, 2015, 91 (02)
[6]   Entanglement estimation from Bell inequality violation [J].
Bartkiewicz, Karol ;
Horst, Bohdan ;
Lemr, Karel ;
Miranowicz, Adam .
PHYSICAL REVIEW A, 2013, 88 (05)
[7]   Direct method for measuring of purity, superfidelity, and subfidelity of photonic two-qubit mixed states [J].
Bartkiewicz, Karol ;
Lemr, Karel ;
Miranowicz, Adam .
PHYSICAL REVIEW A, 2013, 88 (05)
[8]   Measuring nonclassical correlations of two-photon states [J].
Bartkiewicz, Karol ;
Lemr, Karel ;
Cernoch, Antonin ;
Soubusta, Jan .
PHYSICAL REVIEW A, 2013, 87 (06)
[9]  
Bengtsson I., 2017, A comprehensive geometric approach to quantum entanglement
[10]   Direct measurement of nonlinear properties of bipartite quantum states [J].
Bovino, FA ;
Castagnoli, G ;
Ekert, A ;
Horodecki, P ;
Alves, CM ;
Sergienko, AV .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)