Tribology of sliding elastic media

被引:59
作者
Cule, D
Hwa, T
机构
[1] Physics Department, University of California at San Diego, La Jolla, CA
关键词
D O I
10.1103/PhysRevLett.77.278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tribology of a sliding elastic continuum in contact with a disordered substrate is investigated analytically and numerically via a bead-spring model. The deterministic dynamics of this system exhibits a depinning transition at a finite driving force, with complex spatial-temporal dynamics including stick-slip events of all sizes. These behaviors can be understood completely by mapping the system to the well-known problem of a directed path in higher-dimensional random media.
引用
收藏
页码:278 / 281
页数:4
相关论文
共 36 条
[1]   UNIVERSALITY CLASSES FOR INTERFACE GROWTH WITH QUENCHED DISORDER [J].
AMARAL, LAN ;
BARABASI, AL ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1994, 73 (01) :62-65
[2]  
BALENTS L, IN PRESS
[3]   VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
FEIGELMAN, MV ;
GESHKENBEIN, VB ;
LARKIN, AI ;
VINOKUR, VM .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1125-1388
[4]  
BURRIDGE R, 1967, B SEISMOL SOC AM, V57, P341
[5]   DYNAMICS OF EARTHQUAKE FAULTS [J].
CARLSON, JM ;
LANGER, JS ;
SHAW, BE .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :657-670
[6]  
CULE D, IN PRESS
[7]   ELASTIC STRING IN A RANDOM POTENTIAL [J].
DONG, M ;
MARCHETTI, MC ;
MIDDLETON, AA ;
VINOKUR, V .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :662-665
[8]  
ERTAS D, CONDMAT9511006
[9]   NUMERICAL EVIDENCE FOR DC=2 IN THE RANDOM-FIELD ISING-MODEL [J].
FERNANDEZ, JF ;
GRINSTEIN, G ;
IMRY, Y ;
KIRKPATRICK, S .
PHYSICAL REVIEW LETTERS, 1983, 51 (03) :203-206
[10]   ELASTIC THEORY OF PINNED FLUX LATTICES [J].
GIAMARCHI, T ;
LEDOUSSAL, P .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1530-1533