Tribology of sliding elastic media

被引:59
作者
Cule, D
Hwa, T
机构
[1] Physics Department, University of California at San Diego, La Jolla, CA
关键词
D O I
10.1103/PhysRevLett.77.278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tribology of a sliding elastic continuum in contact with a disordered substrate is investigated analytically and numerically via a bead-spring model. The deterministic dynamics of this system exhibits a depinning transition at a finite driving force, with complex spatial-temporal dynamics including stick-slip events of all sizes. These behaviors can be understood completely by mapping the system to the well-known problem of a directed path in higher-dimensional random media.
引用
收藏
页码:278 / 281
页数:4
相关论文
共 36 条
  • [1] UNIVERSALITY CLASSES FOR INTERFACE GROWTH WITH QUENCHED DISORDER
    AMARAL, LAN
    BARABASI, AL
    STANLEY, HE
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (01) : 62 - 65
  • [2] BALENTS L, IN PRESS
  • [3] VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS
    BLATTER, G
    FEIGELMAN, MV
    GESHKENBEIN, VB
    LARKIN, AI
    VINOKUR, VM
    [J]. REVIEWS OF MODERN PHYSICS, 1994, 66 (04) : 1125 - 1388
  • [4] BURRIDGE R, 1967, B SEISMOL SOC AM, V57, P341
  • [5] DYNAMICS OF EARTHQUAKE FAULTS
    CARLSON, JM
    LANGER, JS
    SHAW, BE
    [J]. REVIEWS OF MODERN PHYSICS, 1994, 66 (02) : 657 - 670
  • [6] CULE D, IN PRESS
  • [7] ELASTIC STRING IN A RANDOM POTENTIAL
    DONG, M
    MARCHETTI, MC
    MIDDLETON, AA
    VINOKUR, V
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (05) : 662 - 665
  • [8] ERTAS D, CONDMAT9511006
  • [9] NUMERICAL EVIDENCE FOR DC=2 IN THE RANDOM-FIELD ISING-MODEL
    FERNANDEZ, JF
    GRINSTEIN, G
    IMRY, Y
    KIRKPATRICK, S
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (03) : 203 - 206
  • [10] ELASTIC THEORY OF PINNED FLUX LATTICES
    GIAMARCHI, T
    LEDOUSSAL, P
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (10) : 1530 - 1533