A Reduction of Label Ranking to Multiclass Classification

被引:2
|
作者
Brinker, Klaus [1 ]
Huellermeier, Eyke [2 ]
机构
[1] Hamm Lippstadt Univ Appl Sci, Hamm, Germany
[2] Paderborn Univ, Paderborn, Germany
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III | 2020年 / 11908卷
关键词
Label ranking; Multiclass classification; Structured output prediction; Ensemble learning; MINIMIZATION;
D O I
10.1007/978-3-030-46133-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Label ranking considers the problem of learning a mapping from instances to strict total orders over a predefined set of labels. In this paper, we present a framework for label ranking using a decomposition into a set of multiclass problems. Conceptually, our approach can be seen as a generalization of pairwise preference learning. In contrast to the latter, it allows for controlling the granularity of the decomposition, varying between binary preferences and complete rankings as extreme cases. It is specifically motivated by limitations of pairwise learning with regard to the minimization of certain loss functions. We discuss theoretical properties of the proposed method in terms of accuracy, error correction, and computational complexity. Experimental results are promising and indicate that improvements upon the special case of pairwise preference decomposition are indeed possible.
引用
收藏
页码:204 / 219
页数:16
相关论文
共 50 条
  • [1] Blind Multiclass Ensemble Classification
    Traganitis, Panagiotis A.
    Pages-Zamora, Alba
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4737 - 4752
  • [2] A New Permutation-Based Method for Ranking and Selecting Group Features in Multiclass Classification
    Zubair, Iqbal Muhammad
    Lee, Yung-Seop
    Kim, Byunghoon
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [3] Exploring multiobjective training in multiclass classification
    Raimundo, Marcos M.
    Drumond, Thalita F.
    Marques, Alan Caio R.
    Lyra, Christiano
    Rocha, Anderson
    Von Zuben, Fernando J.
    NEUROCOMPUTING, 2021, 435 : 307 - 320
  • [4] Label Ranking Forests
    de Sa, Claudio Rebelo
    Soares, Carlos
    Knobbe, Arno
    Cortez, Paulo
    EXPERT SYSTEMS, 2017, 34 (01)
  • [5] mCRF and mRD: Two Classification Methods Based on a Novel Multiclass Label Noise Filtering Learning Framework
    Xia, Shuyin
    Chen, Baiyun
    Wang, Guoyin
    Zheng, Yong
    Gao, Xinbo
    Giem, Elisabeth
    Chen, Zizhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) : 2916 - 2930
  • [6] On the consistency of multiclass classification methods
    Tewari, Ambuj
    Bartlett, Peter L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1007 - 1025
  • [7] Extreme Multiclass Classification Criteria
    Choromanska, Anna
    Jain, Ish Kumar
    COMPUTATION, 2019, 7 (01)
  • [8] RipMC: RIPPER for Multiclass Classification
    Asadi, Shahrokh
    Shahrabi, Jamal
    NEUROCOMPUTING, 2016, 191 : 19 - 33
  • [9] A triplot for multiclass classification visualisation
    Gardner-Lubbe, Sugnet
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 20 - 32
  • [10] New Bounds on the Accuracy of Majority Voting for Multiclass Classification
    Aeeneh, Sina
    Zlatanov, Nikola
    Yu, Jiangshan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15