Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Holder Neuron Activations

被引:0
|
作者
Wang, Xiaohong [1 ]
Wu, Huaiqin [1 ]
机构
[1] Yanshan Univ, Sch Sci, Qinhuangdao 066001, Hebei, Peoples R China
关键词
fractional neural networks; global Mittag-Leffler stability; delta-inverse Holder functions; Lur'e Postnikov-type Lyapunov functional; topological degree; FINITE-TIME; SYNCHRONIZATION;
D O I
10.3103/S1060992X19040064
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with delta-inverse holder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure's Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 50 条
  • [41] Delayed Reaction-Diffusion Cellular Neural Networks of Fractional Order: Mittag-Leffler Stability and Synchronization
    Stamov, Ivanka M.
    Simeonov, Stanislav
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (01):
  • [42] Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks
    Chen, Shenglong
    Li, Hong-Li
    Bao, Haibo
    Zhang, Long
    Jiang, Haijun
    Li, Zhiming
    NEUROCOMPUTING, 2022, 511 : 290 - 298
  • [43] Global Mittag-Leffler Stabilization of Fractional-Order BAM Neural Networks with Linear State Feedback Controllers
    Yan, Hongyun
    Qiao, Yuanhua
    Duan, Lijuan
    Zhang, Ling
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [44] Lur'e-Postnikov Lyapunov function approach to global robust Mittag-Leffler stability of fractional-order neural networks
    Song, Ka
    Wu, Huaiqin
    Wang, Lifei
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [45] Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Kao, Yonggui
    Zhang, Long
    Jiang, Haijun
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 433
  • [46] MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 977 - 992
  • [47] Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay
    Sadati, S. J.
    Baleanu, D.
    Ranjbar, A.
    Ghaderi, R.
    Abdeljawad , T.
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [48] Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays
    Ke, Liang
    Neurocomputing, 2021, 465 : 53 - 62
  • [49] Global Mittag-Leffler Boundedness for Fractional-Order Complex-Valued Cohen–Grossberg Neural Networks
    Peng Wan
    Jigui Jian
    Neural Processing Letters, 2019, 49 : 121 - 139
  • [50] Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays
    Ke, Liang
    NEUROCOMPUTING, 2021, 465 : 53 - 62