Deep principal dimension encoding for the classification of early neoplasia in Barrett's Esophagus with volumetric laser endomicroscopy

被引:12
作者
van der Putten, Joost [1 ]
Struyvenberg, Maarten [2 ]
de Groof, Jeroen [2 ]
Scheeve, Thom [1 ]
Curvers, Wouter [3 ]
Schoon, Erik [3 ]
Bergman, Jacques J. G. H. M. [2 ]
de With, Peter H. N. [1 ]
van der Sommen, Fons [1 ]
机构
[1] Eindhoven Univ Technol, VCA Res Grp, Eindhoven, Netherlands
[2] Amsterdam UMC, Amsterdam, Netherlands
[3] Catharina Hosp, Eindhoven, Netherlands
关键词
Deep learning; Segmentation; Classification; Volumetric laser endomicroscopy; ADENOCARCINOMA; DISEASE;
D O I
10.1016/j.compmedimag.2020.101701
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Barrett cancer is a treatable disease when detected at an early stage. However, current screening protocols are often not effective at finding the disease early. Volumetric Laser Endomicroscopy (VLE) is a promising new imaging tool for finding dysplasia in Barrett's esophagus (BE) at an early stage, by acquiring cross-sectional images of the microscopic structure of BE up to 3-mm deep. However, interpretation of VLE scans is difficult for medical doctors due to both the size and subtlety of the gray-scale data. Therefore, algorithms that can accurately find cancerous regions are very valuable for the interpretation of VLE data. In this study, we propose a fully-automatic multi-step Computer-Aided Detection (CAD) algorithm that optimally leverages the effectiveness of deep learning strategies by encoding the principal dimension in VLE data. Additionally, we show that combining the encoded dimensions with conventional machine learning techniques further improves results while maintaining interpretability. Furthermore, we train and validate our algorithm on a new histopathologically validated set of in-vivo VLE snapshots. Additionally, an independent test set is used to assess the performance of the model. Finally, we compare the performance of our algorithm against previous state-of-the-art systems. With the encoded principal dimension, we obtain an Area Under the Curve (AUC) and F-1 score of 0.93 and 87.4% on the test set respectively. We show this is a significant improvement compared to the state-of-the-art of 0.89 and 83.1%, respectively, thereby demonstrating the effectiveness of our approach. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 40 条
[31]   Feasibility of laser marking in Barrett's esophagus with volumetric laser endomicroscopy: first-in-man pilot study [J].
Swager, Anne-Fre ;
de Groof, Albert J. ;
Meijer, Sybren L. ;
Weusten, Bas L. ;
Curvers, Wouter L. ;
Bergman, Jacques J. .
GASTROINTESTINAL ENDOSCOPY, 2017, 86 (03) :464-472
[32]   Computer-aided detection of early Barrett's neoplasia using volumetric laser endomicroscopy [J].
Swager, Anne-Fre ;
van der Sommen, Fons ;
Klomp, Sander R. ;
Zinger, Sveta ;
Meijer, Sybren L. ;
Schoon, Erik J. ;
Bergman, Jacques J. G. H. M. ;
de With, Peter H. ;
Curvers, Wouter L. .
GASTROINTESTINAL ENDOSCOPY, 2017, 86 (05) :839-846
[33]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[34]   Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage [J].
Ughi, G. J. ;
Adriaenssens, T. ;
Onsea, K. ;
Kayaert, P. ;
Dubois, C. ;
Sinnaeve, P. ;
Coosemans, M. ;
Desmet, W. ;
D'hooge, J. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2012, 28 (02) :229-241
[35]   Tissue segmentation in volumetric laser endomicroscopy data using FusionNet and a domain-specific loss function [J].
van der Putten, Joost ;
van der Sommen, Fons ;
Struyvenberg, Maarten ;
de Groof, Jeroen ;
Curvers, Wouter ;
Schoon, Erik ;
Bergman, Jaques J. G. H. M. ;
de With, Peter H. N. .
MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
[36]   Predictive features for early cancer detection in Barrett's esophagus using Volumetric Laser Endomicroscopy [J].
van der Sommen, Fons ;
Klomp, Sander R. ;
Swager, Anne-Fre ;
Zinger, Svitlana ;
Curvers, Wouter L. ;
Bergman, Jacques J. G. H. M. ;
Schoon, Erik J. ;
de With, Peter H. N. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 67 :9-20
[37]   Novel Developments in Endoscopic Mucosal Imaging [J].
van der Sommen, Fons ;
Curvers, Wouter L. ;
Nagengast, Wouter B. .
GASTROENTEROLOGY, 2018, 154 (07) :1876-1886
[38]  
Wilcoxon F., 1970, Sel. Tables Math. Stat, V1, P171
[39]   Deep residual learning for image steganalysis [J].
Wu, Songtao ;
Zhong, Shenghua ;
Liu, Yan .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (09) :10437-10453
[40]   Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method [J].
Zhou, Teng ;
Han, Guoqiang ;
Li, Bing Nan ;
Lin, Zhizhe ;
Ciaccio, Edward J. ;
Green, Peter H. ;
Qin, Jing .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 85 :1-6