Quasimorphisms on contactomorphism groups and contact rigidity

被引:16
作者
Borman, Matthew Strom [1 ]
Zapolsky, Frol
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
LAGRANGIAN TORIC FIBERS; QUASI-MORPHISMS; FLOER COHOMOLOGY; HOMOLOGY; INTERSECTIONS; GEOMETRY; STATES; TRANSFORMATIONS; ORDERABILITY; COMMUTATORS;
D O I
10.2140/gt.2015.19.365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We build homogeneous quasimorphisms on the universal cover of the contactomorphism group for certain prequantizations of monotone symplectic toric manifolds. This is done using Givental's nonlinear Maslov index and a contact reduction technique for quasimorphisms. We show how these quasimorphisms lead to a hierarchy of rigid subsets of contact manifolds. We also show that the nonlinear Maslov index has a vanishing property, which plays a key role in our proofs. Finally we present applications to orderability of contact manifolds and Sandon-type metrics on contactomorphism groups.
引用
收藏
页码:365 / 411
页数:47
相关论文
共 89 条
[1]   QUASI-STATES AND QUASI-MEASURES [J].
AARNES, JF .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :41-67
[2]   Displacing Lagrangian toric fibers by extended probes [J].
Abreu, Miguel ;
Borman, Matthew Strom ;
McDuff, Dusa .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02) :687-752
[3]  
Abreu M, 2013, T AM MATH SOC, V365, P3851
[4]   Contact homology of good toric contact manifolds [J].
Abreu, Miguel ;
Macarini, Leonardo .
COMPOSITIO MATHEMATICA, 2012, 148 (01) :304-334
[5]  
Albers P., ARXIV13026576
[6]   A VARIATIONAL APPROACH TO GIVENTAL'S NONLINEAR MASLOV INDEX (vol 22, pg 1033, 2012) [J].
Albers, Peter ;
Frauenfelder, Urs .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (01) :482-499
[7]   Floer Cohomology of Torus Fibers and Real Lagrangians in Fano Toric Manifolds [J].
Alston, Garrett ;
Amorim, Lino .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (12) :2751-2793
[8]  
Banyaga A., 1997, MATH APPL, V400
[9]  
Batyrev V. V., 1999, J. Math. Sci, V94, P1021, DOI DOI 10.1007/BF02367245
[10]  
BATYREV VV, 1981, IZV AKAD NAUK SSSR M, V45, P704