Nanolasers grown on silicon

被引:102
作者
Chen, Roger [1 ]
Tran, Thai-Truong D.
Ng, Kar Wei
Ko, Wai Son
Chuang, Linus C.
Sedgwick, Forrest G.
Chang-Hasnain, Connie
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
WAVE-GUIDES; OPTICAL GAIN; LASERS;
D O I
10.1038/NPHOTON.2010.315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The integration of optical interconnects with silicon-based electronics can address the growing limitations facing chip-scale data transport as microprocessors become progressively faster. However, until now, material lattice mismatch and incompatible growth temperatures have fundamentally limited monolithic integration of lasers onto silicon substrates. Here, we use a novel growth scheme to overcome this roadblock and directly grow on-chip InGaAs nanopillar lasers, demonstrating the potency of bottom-up nano-optoelectronic integration. Unique helically propagating cavity modes are used to strongly confine light within subwavelength nanopillars despite the low refractive index contrast between InGaAs and silicon. These modes therefore provide an avenue for engineering on-chip nanophotonic devices such as lasers. Nanopillar lasers are as-grown on silicon, offer tiny footprints and scalability, and are thus particularly suited to high-density optoelectronics. They may ultimately form the basis of future monolithic light sources needed to bridge the existing gap between photonic and electronic circuits.
引用
收藏
页码:170 / 175
页数:6
相关论文
共 44 条
[1]   HEXAGONAL-FACET LASER WITH OPTICAL WAVE-GUIDES GROWN BY SELECTIVE-AREA METALORGANIC CHEMICAL-VAPOR-DEPOSITION [J].
ANDO, S ;
KOBAYASHI, N ;
ANDO, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1995, 34 (1A) :L4-L6
[2]   Photonic crystals and microdisk cavities based on GaInAsP-InP system [J].
Baba, T .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) :808-830
[3]   ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS USING RATE-EQUATIONS [J].
BJORK, G ;
YAMAMOTO, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (11) :2386-2396
[4]   Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J].
Bogaerts, W ;
Baets, R ;
Dumon, P ;
Wiaux, V ;
Beckx, S ;
Taillaert, D ;
Luyssaert, B ;
Van Campenhout, J ;
Bienstman, P ;
Van Thourhout, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :401-412
[5]   Demonstration of a silicon Raman laser [J].
Boyraz, O ;
Jalali, B .
OPTICS EXPRESS, 2004, 12 (21) :5269-5273
[6]   Predictions of CMOS compatible on-chip optical interconnect [J].
Chen, Guoqing ;
Chen, Hui ;
Haurylau, Mikhail ;
Nelson, Nicholas A. ;
Albonesi, David H. ;
Fauchet, Philippe M. ;
Friedman, Eby G. .
INTEGRATION-THE VLSI JOURNAL, 2007, 40 (04) :434-446
[7]   LOW-THRESHOLD (APPROXIMATELY-600 A/CM2 AT ROOM-TEMPERATURE) GAAS/AIGAAS LASERS ON SI (100) [J].
CHEN, HZ ;
GHAFFARI, A ;
WANG, H ;
MORKOC, H ;
YARIV, A .
APPLIED PHYSICS LETTERS, 1987, 51 (17) :1320-1321
[8]   Second-harmonic generation from a single wurtzite GaAs nanoneedle [J].
Chen, Roger ;
Crankshaw, Shanna ;
Tran, Thai ;
Chuang, Linus C. ;
Moewe, Michael ;
Chang-Hasnain, Connie .
APPLIED PHYSICS LETTERS, 2010, 96 (05)
[9]   Microdisk lasers vertically coupled to output waveguides [J].
Choi, SJ ;
Djordjev, K ;
Choi, SJ ;
Dapkus, PD .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (10) :1330-1332
[10]  
CHUANG LC, 2010, C LAS EL OSA