Superior strength-ductility combination of a Co-rich CoCrNiAlTi high-entropy alloy at room and cryogenic temperatures

被引:21
作者
Du, X. H. [1 ]
Huo, X. F. [1 ]
Chang, H. T. [1 ]
Li, W. P. [2 ]
Duan, G. S. [1 ]
Huang, J. C. [2 ]
Wu, B. L. [1 ]
Zou, N. F. [1 ]
Zhang, L. [1 ]
机构
[1] Shenyang Aerosp Univ, Sch Mat Sci & Engn, Shenyang, Peoples R China
[2] City Univ Hong Kong, Dept Mat Sci Engn, Kowloon, Hong Kong, Peoples R China
关键词
high-entropy alloys; multiple-phase microstructure; mechanical properties; strengthening and toughening mechanisms; PLASTIC-DEFORMATION; FRICTION STRESS; EVOLUTION; BEHAVIOR; PHASE; TRANSFORMATION; NANOPARTICLES; IMPROVEMENT; CAST;
D O I
10.1088/2053-1591/ab7a64
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, a Co-rich CoCrNi-AlTi high-entropy alloy was designed and fabricated by hot forging and 700 degrees C for 8 h annealing process. The microstructure of the resultant alloy was composed of three multicomponent-phases with the face-centered cubic (FCC) structure, hexagonal close-packed (HCP) structure and L1(2) structure, respectively. The alloy exhibited a remarkable combination of tensile yield strength (gigapascal scale) and plasticity (uniform strain over 30%) at both room and cryogenic temperatures. The cooperative operation of multiple mechanisms consisting of refined-grain strengthening, second-phase strengthening, precipitation strengthening, stacking faults and phase-transformation toughening was suggested to be responsible for the excellent mechanical response.
引用
收藏
页数:7
相关论文
共 42 条
[1]  
[Anonymous], ACTA METALL
[2]   Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J].
Bhattacharjee, Tilak ;
Zheng, Ruixiao ;
Chong, Yan ;
Sheikh, Saad ;
Guo, Sheng ;
Clark, Ian Thomas ;
Okawa, Toshiro ;
Wani, Irfan Samad ;
Bhattacharjee, Pinaki Prasad ;
Shibata, Akinobu ;
Tsuji, Nobuhiro .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 :207-212
[3]   High strength dual-phase high entropy alloys with a tunable nanolayer thickness [J].
Cao, Z. H. ;
Ma, Y. J. ;
Cai, Y. P. ;
Wang, G. J. ;
Meng, X. K. .
SCRIPTA MATERIALIA, 2019, 173 :149-153
[4]   Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J].
Ding, Jun ;
Yu, Qin ;
Asta, Mark ;
Ritchie, Robert O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) :8919-8924
[5]   Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys [J].
Fang, Qihong ;
Chen, Yang ;
Li, Jia ;
Jiang, Chao ;
Liu, Bin ;
Liu, Yong ;
Liaw, Peter K. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 114 :161-173
[6]   Precipitation hardening in metals [J].
Gladman, T .
MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (01) :30-36
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS [J].
HALL, EO .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381) :747-753
[9]   A precipitation-hardened high-entropy alloy with outstanding tensile properties [J].
He, J. Y. ;
Wang, H. ;
Huang, H. L. ;
Xu, X. D. ;
Chen, M. W. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
An, K. ;
Lu, Z. P. .
ACTA MATERIALIA, 2016, 102 :187-196
[10]   Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J].
Huang, Hailong ;
Wu, Yuan ;
He, Junyang ;
Wang, Hui ;
Liu, Xiongjun ;
An, Ke ;
Wu, Wei ;
Lu, Zhaoping .
ADVANCED MATERIALS, 2017, 29 (30)