Chemical probes of bacterial signal transduction reveal that repellents stabilize and attractants destabilize the chemoreceptor array

被引:20
作者
Borrok, M. Jack [1 ]
Kolonko, Erin M. [2 ]
Kiessling, Laura L. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
关键词
D O I
10.1021/cb700211s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The signal transduction cascade responsible for bacterial chemotaxis serves as a model for understanding how cells perceive and respond to their environments. Bacteria react to chemotactic signals by migrating toward attractants and away from repellents. Recent data suggest that the amplification of attractant stimuli depends on receptor collaboration: occupied and unoccupied chemoreceptors act together to relay attractant signals. Attractant signal transmission, therefore, depends on the organization of the chemoreceptors into a lattice of signaling proteins. The importance of this lattice for transducing repellent signals was unexplored. Here, we investigate the role of inter-receptor communication on repellent responses in Escherichia coli. Previously, we found that multivalent displays of attractants are more potent than their monovalent counterparts. To examine the importance of the chemoreceptor lattice in repellent signaling, we synthesized ligands displaying multiple copies of the repellent leucine. Monomeric leucine and low-valency leucine-displaying polymers were sensed as repellents. In contrast, multivalent displays of leucine capable of binding multiple chemoreceptors function not as potent repellents but as attractants. Intriguingly, chemical cross-linking studies indicate that these multivalent ligands, like monovalent attractants, disrupt the cellular chemoreceptor lattice. Thus, repellents stabilize the intrinsic chemoreceptor lattice, and attractants destabilize it. These results indicate that signals can be transmitted with high sensitivity via the disruption of protein-protein interactions. Moreover, our data demonstrate that repellents can be transformed into attractants merely by their multivalent display. These results have implications for designing agonists and antagonists for other signaling systems.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 56 条
[1]   CHEMOTAXIS TOWARD SUGARS IN ESCHERICHIA-COLI [J].
ADLER, J ;
HAZELBAUER, GL ;
DAHL, MM .
JOURNAL OF BACTERIOLOGY, 1973, 115 (03) :824-847
[2]   Contrast agents for magnetic resonance imaging synthesized with ring-opening metathesis polymerization [J].
Allen, Matthew J. ;
Raines, Ronald T. ;
Kiessling, Laura L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (20) :6534-6535
[3]   Collaborative signaling by mixed chemoreceptor teams in Escherichia coli [J].
Ames, P ;
Studdert, CA ;
Reiser, RH ;
Parkinson, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :7060-7065
[4]   Use of computer-assisted motion analysis for quantitative measurements of swimming behavior in peritrichously flagellated bacteria [J].
Amsler, CD .
ANALYTICAL BIOCHEMISTRY, 1996, 235 (01) :20-25
[5]   Comparison in vitro of a high- and a low-abundance chemoreceptor of Escherichia coli:: Similar kinase activation but different methyl-accepting activities [J].
Barnakov, AN ;
Barnakova, LA ;
Hazelbauer, GL .
JOURNAL OF BACTERIOLOGY, 1998, 180 (24) :6713-6718
[6]   THE SYNTHESIS OF HETEROBIFUNCTIONAL LINKERS FOR THE CONJUGATION OF LIGANDS TO MOLECULAR PROBES [J].
BERTOZZI, CR ;
BEDNARSKI, MD .
JOURNAL OF ORGANIC CHEMISTRY, 1991, 56 (13) :4326-4329
[7]   ATTENUATION OF SENSORY RECEPTOR SIGNALING BY COVALENT MODIFICATION [J].
BORKOVICH, KA ;
ALEX, LA ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (15) :6756-6760
[8]   Receptor clustering as a cellular mechanism to control sensitivity [J].
Bray, D ;
Levin, MD ;
Morton-Firth, CJ .
NATURE, 1998, 393 (6680) :85-88
[9]   How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation [J].
Bren, A ;
Eisenbach, M .
JOURNAL OF BACTERIOLOGY, 2000, 182 (24) :6865-6873
[10]   Total synthesis of ustiloxin D [J].
Cao, B ;
Park, H ;
Joullié, MM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (04) :520-521