Physically realizable entanglement by local continuous measurements

被引:22
作者
Mascarenhas, Eduardo [1 ,2 ]
Cavalcanti, Daniel [2 ]
Vedral, Vlatko [2 ,3 ,4 ]
Santos, Marcelo Franca [1 ,2 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117548, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117548, Singapore
[4] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 02期
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevA.83.022311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum systems prepared in pure states evolve into mixtures under environmental action. Continuously realizable ensembles (or physically realizable) are the pure state decompositions of those mixtures that can be generated in time through continuous measurements of the environment. Here, we define continuously realizable entanglement as the average entanglement over realizable ensembles. We search for the measurement strategy to maximize and minimize this quantity through observations on the independent environments that cause two qubits to disentangle in time. We then compare it with the entanglement bounds (entanglement of formation and entanglement of assistance) for the unmonitored system. For some relevant noise sources the maximum realizable entanglement coincides with the upper bound, establishing the scheme as an alternative to protect entanglement. However, for local strategies, the lower bound of the unmonitored system is not reached.
引用
收藏
页数:5
相关论文
共 22 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[3]   Controlling entanglement by direct quantum feedback [J].
Carvalho, A. R. R. ;
Reid, A. J. S. ;
Hope, J. J. .
PHYSICAL REVIEW A, 2008, 78 (01)
[4]   Optimal dynamical characterization of entanglement [J].
Carvalho, Andre R. R. ;
Busse, Marc ;
Brodier, Olivier ;
Viviescas, Carlos ;
Buchleitner, Andreas .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[5]  
Diosi L., 2003, IRREVERSIBLE QUANTUM
[6]  
DiVincenzo DP, 1999, LECT NOTES COMPUT SC, V1509, P247
[7]   Disentanglement and decoherence by open system dynamics [J].
Dodd, PJ ;
Halliwell, JJ .
PHYSICAL REVIEW A, 2004, 69 (05) :052105-1
[8]   QUANTUM MEASUREMENTS AND STOCHASTIC-PROCESSES [J].
GISIN, N .
PHYSICAL REVIEW LETTERS, 1984, 52 (19) :1657-1660
[9]   Weak measurement and control of entanglement generation [J].
Hill, Charles ;
Ralph, Jason .
PHYSICAL REVIEW A, 2008, 77 (01)
[10]   Optimal control of entanglement via quantum feedback [J].
Mancini, Stefano ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2007, 75 (01)