Global gyrokinetic simulations of ASDEX Upgrade up to the transport timescale with GENE-Tango

被引:15
作者
Di Siena, A. [1 ,2 ]
Navarro, A. Banon [2 ]
Luda, T. [2 ]
Merlo, G. [1 ]
Bergmann, M. [2 ]
Leppin, L. [2 ]
Goerler, T. [2 ]
Parker, J. B. [3 ]
LoDestro, L. [3 ]
Dannert, T. [2 ]
Germaschewski, K. [4 ,5 ]
Allen, B. [6 ,7 ]
Hittinger, J. [3 ]
Dorland, B. W. [8 ]
Hammett, G. [9 ]
Jenko, F. [2 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[5] Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA
[6] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[7] Argonne Natl Lab, Computat Sci Div, Lemont, IL 60439 USA
[8] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[9] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
integrated modeling; confinement; gyrokinetic turbulence; transport timescale; H-MODE PLASMAS; DENSITY PEAKING; MAGNETIC SHEAR; TURBULENCE; COLLISIONALITY; PROPAGATION; CONFINEMENT; PARTICLE; PINCH; JET;
D O I
10.1088/1741-4326/ac8941
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An accurate description of turbulence up to the transport timescale is essential for predicting core plasma profiles and enabling reliable calculations for designing advanced scenarios and future devices. Here, we exploit the gap separation between turbulence and transport timescales and couple the global gyrokinetic code GENE to the transport-solver Tango, including kinetic electrons, collisions, realistic geometries, toroidal rotation and electromagnetic effects for the first time. This approach overcomes gyrokinetic codes' limitations and enables high-fidelity profile calculations in experimentally relevant plasma conditions, significantly reducing the computational cost. We present numerical results of GENE-Tango for two ASDEX Upgrade discharges, one of which exhibits a pronounced peaking of the ion temperature profile not reproduced by TGLF-ASTRA. We show that GENE-Tango can correctly capture the ion temperature peaking observed in the experiment. By retaining different physical effects in the GENE simulations, e.g., collisions, toroidal rotation and electromagnetic effects, we show that the ion temperature profile's peaking can be linked to electromagnetic effects of submarginal (stable) KBM modes. Based on these results, the expected GENE-Tango speedup for the ITER standard scenario is larger than two orders of magnitude compared to a single gyrokinetic simulation up to the transport timescale, possibly making first-principles ITER simulations feasible on current computing resources.
引用
收藏
页数:23
相关论文
共 105 条
[1]   Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows [J].
Abel, I. G. ;
Plunk, G. G. ;
Wang, E. ;
Barnes, M. ;
Cowley, S. C. ;
Dorland, W. ;
Schekochihin, A. A. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (11)
[2]   Scaling of density peaking in H-mode plasmas based on a combined database of AUG and JET observations [J].
Angioni, C. ;
Weisen, H. ;
Kardaun, O. J. W. F. ;
Maslov, M. ;
Zabolotsky, A. ;
Fuchs, C. ;
Garzotti, L. ;
Giroud, C. ;
Kurzan, B. ;
Mantica, P. ;
Peeters, A. G. ;
Stober, J. .
NUCLEAR FUSION, 2007, 47 (09) :1326-1335
[3]   Density peaking, anomalous pinch, and collisionality in tokamak plasmas [J].
Angioni, C ;
Peeters, AG ;
Pereverzev, GV ;
Ryter, F ;
Tardini, G .
PHYSICAL REVIEW LETTERS, 2003, 90 (20) :4-205003
[4]   Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects [J].
Angioni, C. ;
Camenen, Y. ;
Casson, F. J. ;
Fable, E. ;
McDermott, R. M. ;
Peeters, A. G. ;
Rice, J. E. .
NUCLEAR FUSION, 2012, 52 (11)
[5]   Theory-based modeling of particle transport in ASDEX Upgrade H-mode plasmas, density peaking, anomalous pinch and collisionality [J].
Angioni, C ;
Peeters, AG ;
Pereverzev, GV ;
Ryter, F ;
Tardini, G .
PHYSICS OF PLASMAS, 2003, 10 (08) :3225-3239
[6]   Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence [J].
Angioni, C. ;
Candy, J. ;
Fable, E. ;
Maslov, M. ;
Peeters, A. G. ;
Waltz, R. E. ;
Weisen, H. .
PHYSICS OF PLASMAS, 2009, 16 (06)
[7]   Overview of ITER-FEAT - The future international burning plasma experiment [J].
Aymar, R ;
Chuyanov, VA ;
Huguet, T ;
Shimomura, Y .
NUCLEAR FUSION, 2001, 41 (10) :1301-1310
[8]   Direct multiscale coupling of a transport code to gyrokinetic turbulence codes [J].
Barnes, M. ;
Abel, I. G. ;
Dorland, W. ;
Goerler, T. ;
Hammett, G. W. ;
Jenko, F. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[9]   Density impact on toroidal rotation in Tore Supra: experimental observations and theoretical investigation [J].
Bernardo, J. ;
Fenzi, C. ;
Bourdelle, C. ;
Camenen, Y. ;
Arnichand, H. ;
Bizarro, Joao P. S. ;
Cortes, S. ;
Garbet, X. ;
Guimaraes-Filho, Z. O. ;
Aniel, T. ;
Artaud, J-F ;
Clairet, F. ;
Cottier, P. ;
Gunn, J. ;
Lotte, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (03)
[10]   A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas [J].
Bourdelle, C. ;
Garbet, X. ;
Imbeaux, F. ;
Casati, A. ;
Dubuit, N. ;
Guirlet, R. ;
Parisot, T. .
PHYSICS OF PLASMAS, 2007, 14 (11)