Automorphic products of singular weight for simple lattices

被引:12
作者
Dittmann, Moritz [1 ]
Hagemeier, Heike [2 ]
Schwagenscheidt, Markus [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Bundesamt Sicherheit Informat Tech, D-53133 Bonn, Germany
关键词
Automorphic forms; Theta correspondence; Simple lattices; FORMS;
D O I
10.1007/s00209-014-1383-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the simple even lattices of square free level and signature . A lattice is called simple if the space of cusp forms of weight for the dual Weil representation of the lattice is trivial. For a simple lattice every formal principal part obeying obvious conditions is the principal part of a vector valued modular form. Using this, we determine all holomorphic Borcherds products of singular weight (arising from vector valued modular forms with non-negative principal part) for the simple lattices. We construct the corresponding vector valued modular forms by eta products and compute expansions of the automorphic products at different cusps.
引用
收藏
页码:585 / 603
页数:19
相关论文
共 15 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], BORCHERDS PRODUCTS O
[3]  
[Anonymous], NAGOYA MATH IN PRESS
[4]  
[Anonymous], THESIS
[5]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[6]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[7]   Reflection groups of Lorentzian lattices [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (02) :319-366
[8]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[9]   Eisenstein series attached to lattices and modular forms on orthogonal groups [J].
Bruinier, JH ;
Kuss, M .
MANUSCRIPTA MATHEMATICA, 2001, 106 (04) :443-459
[10]   On the rank of Picard groups of modular varieties attached to orthogonal groups [J].
Bruinier, JH .
COMPOSITIO MATHEMATICA, 2002, 133 (01) :49-63