Population Based Equilibrium in Hybrid SA/PSO for Combinatorial Optimization: Hybrid SA/PSO for Combinatorial Optimization

被引:13
作者
Brezinski, Kenneth [1 ]
Guevarra, Michael [1 ]
Ferens, Ken [2 ]
机构
[1] Univ Manitoba, Winnipeg, MB, Canada
[2] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB, Canada
来源
INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI | 2020年 / 12卷 / 02期
关键词
Cognition; Combinatorial Optimization; Global Optimization; Metaheuristics; Particle Swarm Optimization; Simulated Annealing; Swarm Intelligence; Traveling Salesperson Problem; PARTICLE SWARM OPTIMIZATION; ALGORITHM; PSO;
D O I
10.4018/IJSSCI.2020040105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article introduces a hybrid algorithm combining simulated annealing (SA) and particle swarm optimization (PSO) to improve the convergence time of a series of combinatorial optimization problems. The implementation carried out a dynamic determination of the equilibrium loops in SA through a simple, yet effective determination based on the recent performance of the swarm members. In particular, the authors demonstrated that strong improvements in convergence time followed from a marginal decrease in global search efficiency compared to that of SA alone, for several benchmark instances of the traveling salesperson problem (TSP). Following testing on 4 additional city list TSP problems, a 30% decrease in convergence time was achieved. All in all, the hybrid implementation minimized the reliance on parameter tuning of SA, leading to significant improvements to convergence time compared to those obtained with SA alone for the 15 benchmark problems tested.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [31] A HYBRID PSO-SA OPTIMIZING APPROACH FOR SVM MODELS IN CLASSIFICATION
    Jiang, Huiyan
    Zou, Lingbo
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2013, 6 (05)
  • [32] Hybrid metaheuristics in combinatorial optimization: A survey
    Blum, Christian
    Puchinger, Jakob
    Raidl, Guenther R.
    Roli, Andrea
    APPLIED SOFT COMPUTING, 2011, 11 (06) : 4135 - 4151
  • [33] Twisted hybrid algorithms for combinatorial optimization
    Caha, Libor
    Kliesch, Alexander
    Koenig, Robert
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)
  • [34] Hybrid Immune PSO Algorithm for Engineering Optimization Problems
    Fan, Lilue
    Ouyang, Aijia
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 179 - 185
  • [35] Hybrid ICA-PSO algorithm for continuous optimization
    Idoumghar, Lhassane
    Cherin, Nicolas
    Siarry, Patrick
    Roche, Robin
    Miraoui, Abdellatif
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11149 - 11170
  • [36] Hybrid PSO6 for hard continuous optimization
    José García-Nieto
    Enrique Alba
    Soft Computing, 2015, 19 : 1843 - 1861
  • [37] Hybrid PSO6 for hard continuous optimization
    Garcia-Nieto, Jose
    Alba, Enrique
    SOFT COMPUTING, 2015, 19 (07) : 1843 - 1861
  • [38] Hybrid Metaheuristic for Combinatorial Optimization based on Immune Network for Optimization and VNS
    Diana, Rodney O. M.
    de Souza, Sergio R.
    Wanner, Elizabeth F.
    Franca Filho, Moacir F.
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 251 - 258
  • [39] A Hybrid Method for Optimization (Discrete PSO plus CLA)
    Jafarpour, B.
    Meybodi, M. R.
    Shiry, S.
    ICIAS 2007: INTERNATIONAL CONFERENCE ON INTELLIGENT & ADVANCED SYSTEMS, VOLS 1-3, PROCEEDINGS, 2007, : 55 - 60
  • [40] VLSI Routing Optimization Using Hybrid PSO Based on Reinforcement Learning
    Nath, Pradyut
    Dey, Sumagna
    Nath, Subhrapratim
    Shankar, Aditya
    Sing, Jamuna Kanta
    Sarkar, Subir Kumar
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 238 - 243