Visibility Adaptation in Ant Colony Optimization for Solving Traveling Salesman Problem

被引:8
|
作者
Bin Shahadat, Abu Saleh [1 ]
Akhand, M. A. H. [1 ]
Kamal, Md Abdus Samad [2 ]
机构
[1] Khulna Univ Engn & Technol, Dept Comp Sci & Engn, Khulna 9203, Bangladesh
[2] Gunma Univ, Grad Sch Sci & Technol, Kiryu, Gumma 3768515, Japan
关键词
ant colony optimization; adaptive visibility; traveling salesman problem; partial solution update; 3-opt local search; SWARM OPTIMIZATION; SEARCH ALGORITHM;
D O I
10.3390/math10142448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ant Colony Optimization (ACO) is a practical and well-studied bio-inspired algorithm to generate feasible solutions for combinatorial optimization problems such as the Traveling Salesman Problem (TSP). ACO is inspired by the foraging behavior of ants, where an ant selects the next city to visit according to the pheromone on the trail and the visibility heuristic (inverse of distance). ACO assigns higher heuristic desirability to the nearest city without considering the issue of returning to the initial city or starting point once all the cities are visited. This study proposes an improved ACO-based method, called ACO with Adaptive Visibility (ACOAV), which intelligently adopts a generalized formula of the visibility heuristic associated with the final destination city. ACOAV uses a new distance metric that includes proximity and eventual destination to select the next city. Including the destination in the metric reduces the tour cost because such adaptation helps to avoid using longer links while returning to the starting city. In addition, partial updates of individual solutions and 3-Opt local search operations are incorporated in the proposed ACOAV. ACOAV is evaluated on a suite of 35 benchmark TSP instances and rigorously compared with ACO. ACOAV generates better solutions for TSPs than ACO, while taking less computational time; such twofold achievements indicate the proficiency of the individual adoption techniques in ACOAV, especially in AV and partial solution update. The performance of ACOAV is also compared with the other ten state-of-the-art bio-inspired methods, including several ACO-based methods. From these evaluations, ACOAV is found as the best one for 29 TSP instances out of 35 instances; among those, optimal solutions have been achieved in 22 instances. Moreover, statistical tests comparing the performance revealed the significance of the proposed ACOAV over the considered bio-inspired methods.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A novel ant colony optimization based on game for traveling salesman problem
    Kang Yang
    Xiaoming You
    Shen Liu
    Han Pan
    Applied Intelligence, 2020, 50 : 4529 - 4542
  • [32] A New Hybrid Ant Colony Optimization Algorithm for the Traveling Salesman Problem
    Zhang, Xiaoxia
    Tang, Lixin
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2008, 5227 : 148 - 155
  • [33] Application of an Improved Ant Colony Optimization on Generalized Traveling Salesman Problem
    Kan Jun-man
    Zhang Yi
    2012 INTERNATIONAL CONFERENCE ON FUTURE ELECTRICAL POWER AND ENERGY SYSTEM, PT A, 2012, 17 : 319 - 325
  • [34] A New Parallel Ant Colony Optimization Algorithm for Traveling Salesman Problem
    Xiong, Jie
    Liu, Caiyun
    Chen, Zhong
    Zou, Xueyu
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, 2008, : 171 - 175
  • [35] An ant colony optimization algorithm with evolutionary operator for traveling salesman problem
    Guo, Jinglei
    Wu, Yong
    Liu, Wei
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 385 - 389
  • [36] A novel ant colony optimization based on game for traveling salesman problem
    Yang, Kang
    You, Xiaoming
    Liu, Shen
    Pan, Han
    APPLIED INTELLIGENCE, 2020, 50 (12) : 4529 - 4542
  • [37] Improved Ant Colony Optimization with Local Search for Traveling Salesman Problem
    Thammano, Arit
    Oonsrikaw, Yindee
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 22 - 27
  • [38] Ant Colony Optimization with Memory and Its Application to Traveling Salesman Problem
    Wang, Rong-Long
    Zhao, Li-Qing
    Zhou, Xiao-Fan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (03) : 639 - 645
  • [39] An Efficient GPU Implementation of Ant Colony Optimization for the Traveling Salesman Problem
    Uchida, Akihiro
    Ito, Yasuaki
    Nakano, Koji
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 94 - 102
  • [40] Ant Colony Optimization for the Traveling Salesman Problem Based on Ants with Memory
    Li, Bifan
    Wang, Lipo
    Song, Wu
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 7, PROCEEDINGS, 2008, : 496 - +