Towards a solution of the inverse X-ray diffraction tomography challenge: theory and iterative algorithm for recovering the 3D displacement field function of Coulomb-type point defects in a crystal

被引:9
作者
Chukhovskii, Felix N. [1 ]
Konarev, Petr, V [1 ,2 ]
Volkov, Vladimir V. [1 ]
机构
[1] Fed Sci Res Ctr, AV Shubnikov Inst Crystallog, Leninsky Prospekt 59, Moscow 119333, Russia
[2] Natl Res Ctr, Kurchatov Inst, Akademika Kurchatova Pl 1, Moscow 123182, Russia
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2020年 / 76卷
基金
俄罗斯基础研究基金会;
关键词
inverse X-ray diffraction tomography problem; semi-kinematical solution of the Takagi-Taupin equations; Coulomb-type point defects; quasi-Newton-Levenberg-Marquardt-simulated annealing algorithm; DYNAMICAL THEORY; TOPO-TOMOGRAPHY; DISLOCATIONS; OPTIMIZATION; SIMULATION; CONTRAST;
D O I
10.1107/S2053273320000145
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The theoretical framework and a joint quasi-Newton-Levenberg-Marquardt-simulated annealing (qNLMSA) algorithm are established to treat an inverse X-ray diffraction tomography (XRDT) problem for recovering the 3D displacement field function f(Ctpd)(r - r(0)) = h . u(r - r(0)) due to a Coulomb-type point defect (Ctpd) located at a point r0 within a crystal [h is the diffraction vector and u(r - r(0)) is the displacement vector]. The joint qNLMSA algorithm operates in a special sequence to optimize the XRDT target function F{P} in a chi(2) sense in order to recover the function f(Ctpd)(r - r(0)) [P is the parameter vector that characterizes the 3D function f(Ctpd)(r - r(0)) in the algorithm search]. A theoretical framework based on the analytical solution of the Takagi-Taupin equations in the semi-kinematical approach is elaborated. In the case of true 2D imaging patterns (2D-IPs) with low counting statistics (noise-free), the joint qNLMSA algorithm enforces the target function F{P} to tend towards the global minimum even if the vector P in the search is initially chosen rather a long way from the true one.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 36 条
  • [1] Optimizing machine learning models for granular NdFeB magnets by very fast simulated annealing
    Park, Hyeon-Kyu
    Lee, Jae-Hyeok
    Lee, Jehyun
    Kim, Sang-Koog
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] [Anonymous], XRAY DET
  • [3] Retrieval of 3D deformations of single crystal defects by X-ray topo-tomography
    Asadchikov, V.
    Besedin, I.
    Buzmakov, A.
    Chukhovskii, F.
    Zolotov, D.
    Roshchin, B.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C1132 - C1132
  • [4] X-ray topo-tomography studies of linear dislocations in silicon single crystals
    Asadchikov, Victor
    Buzmakov, Alexey
    Chukhovskii, Felix
    Dyachkova, Irina
    Zolotov, Denis
    Danilewsky, Andreas
    Baumbach, Tilo
    Bode, Simon
    Haaga, Simon
    Haenschke, Daniel
    Kabukcuoglu, Merve
    Balzer, Matthias
    Caselle, Michele
    Suvorov, Ernest
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 : 1616 - 1622
  • [5] 3-DIMENSIONAL X-RAY TOPOGRAPHIC STUDIES OF INTERNAL DISLOCATION SOURCES IN SILICON
    AUTHIER, A
    LANG, AR
    [J]. JOURNAL OF APPLIED PHYSICS, 1964, 35 (06) : 1956 - &
  • [6] Authier A, 2001, Dynamical Theory of X-ray Diffraction
  • [7] Study of the diffraction contrast of dislocations in X-ray topo-tomography: A computer simulation and image analysis
    Besedin, I. S.
    Chukhovskii, F. N.
    Asadchikov, V. E.
    [J]. CRYSTALLOGRAPHY REPORTS, 2014, 59 (03) : 323 - 330
  • [8] Bowen K., 1998, HIGH RESOLUTION XRAY
  • [9] Dynamic Newton-gradient-direction-type algorithm for multilayer structure determination using grazing X-ray specular scattering: numerical simulation and analysis
    Chukhovskii, F. N.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2009, 65 : 39 - 45
  • [10] DYNAMICAL THEORY OF X-RAY IMAGES OF REAL CRYSTALS
    CHUKHOVSKII, FN
    SHTOLBERG, AA
    [J]. PHYSICA STATUS SOLIDI, 1970, 41 (02): : 815 - +