Polyhedral approximation in mixed-integer convex optimization

被引:39
作者
Lubin, Miles [1 ]
Yamangil, Emre [2 ]
Bent, Russell [2 ]
Vielma, Juan Pablo [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
关键词
Convex MINLP; Outer approximation; Disciplined convex programming; SOFTWARE; BRANCH;
D O I
10.1007/s10107-017-1191-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Generalizing both mixed-integer linear optimization and convex optimization, mixed-integer convex optimization possesses broad modeling power but has seen relatively few advances in general-purpose solvers in recent years. In this paper, we intend to provide a broadly accessible introduction to our recent work in developing algorithms and software for this problem class. Our approach is based on constructing polyhedral outer approximations of the convex constraints, resulting in a global solution by solving a finite number of mixed-integer linear and continuous convex subproblems. The key advance we present is to strengthen the polyhedral approximations by constructing them in a higher-dimensional space. In order to automate this extended formulation we rely on the algebraic modeling technique of disciplined convex programming (DCP), and for generality and ease of implementation we use conic representations of the convex constraints. Although our framework requires a manual translation of existing models into DCP form, after performing this transformation on the MINLPLIB2 benchmark library we were able to solve a number of unsolved instances and on many other instances achieve superior performance compared with state-of-the-art solvers like Bonmin, SCIP, and Artelys Knitro.
引用
收藏
页码:139 / 168
页数:30
相关论文
共 43 条
[1]   FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs [J].
Abhishek, Kumar ;
Leyffer, Sven ;
Linderoth, Jeff .
INFORMS JOURNAL ON COMPUTING, 2010, 22 (04) :555-567
[2]   SCIP: solving constraint integer programs [J].
Achterberg, Tobias .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :1-41
[3]   NP-hardness of deciding convexity of quartic polynomials and related problems [J].
Ahmadi, Amir Ali ;
Olshevsky, Alex ;
Parrilo, Pablo A. ;
Tsitsiklis, John N. .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :453-476
[4]  
[Anonymous], 1999, Nonlinear programming
[5]  
[Anonymous], 1999, Large scale linear and integer optimization: a unified approach
[6]  
Belotti P., 2016, 2016 IEEE SENS ARR M, P1
[7]   Mixed-integer nonlinear optimization [J].
Belotti, Pietro ;
Kirches, Christian ;
Leyffer, Sven ;
Linderoth, Jeff ;
Luedtke, James ;
Mahajan, Ashutosh .
ACTA NUMERICA, 2013, 22 :1-131
[8]  
Ben-Tal A., 2001, Society for Industrial and Applied Mathematics, DOI 10.1137/1.9780898718829
[9]  
Bixby R., 2015, GUROBI OPTIMIZATION
[10]  
Bonami P., 2013, J EXP ALGORITHMICS, V18, P2