A spin decomposition of the Verlinde formulas for type A modular categories

被引:10
作者
Blanchet, C [1 ]
机构
[1] Univ Bretagne Sud, LMAM, F-56017 Vannes, France
关键词
D O I
10.1007/s00220-005-1341-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A modular category is a braided category with some additional algebraic features. The interest of this concept is that it provides a Topological Quantum Field Theory in dimension 3. The Verlinde formulas associated with a modular category are the dimensions of the TQFT modules. We discuss reductions and refinements of these formulas for modular categories related with SU(N). Our main result is a splitting of the Verlinde formula, corresponding to a brick decomposition of the TQFT modules whose summands are indexed by spin structures modulo an even integer. We introduce here the notion of a spin modular category, and give the proof of the decomposition theorem in this general context.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 35 条
[1]  
ANDERSEN HH, 1995, COMMUN MATH PHYS, V169, P563, DOI 10.1007/BF02099312
[2]   Involutions on moduli spaces and refinements of the Verlinde formula [J].
Andersen, JE ;
Masbaum, G .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :291-326
[3]  
[Anonymous], 1996, P HIRZEBRUCH 65 C AL
[4]  
[Anonymous], 1997, PANORAMAS SYNTHESES
[5]  
[Anonymous], SEMINAIRE BOURBAKI
[6]  
[Anonymous], 1997, GRAD TEXTS MATH
[7]  
Atiyah M.F., 1971, Ann. Sci. Ecole Norm. Sup., V4, P47
[8]  
Bakalov B., 2001, U LECT SERIES, V21
[9]   CONFORMAL BLOCKS AND GENERALIZED THETA-FUNCTIONS [J].
BEAUVILLE, A ;
LASZLO, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) :385-419
[10]   Modular categories of types B,C and D [J].
Beliakova, A ;
Blanchet, C .
COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (03) :467-500