Two results on composition operators on the Dirichlet space

被引:6
作者
Li, Daniel [1 ,2 ]
Queffelec, Herve [3 ,4 ]
Rodriguez-Piazza, Luis [5 ,6 ]
机构
[1] Univ Lille Nord France, U Artois, Lab Math Lens EA 2462, F-62300 Lens, France
[2] Fac Sci Jean Perrin, Federat CNRS Nord Pas de Calais FR 2956, F-62300 Lens, France
[3] Univ Lille Nord France, USTL, Lab Paul Painleve UMR CNRS 8524, F-59655 Villeneuve Dascq, France
[4] Federat CNRS Nord Pas de Calais FR 2956, F-59655 Villeneuve Dascq, France
[5] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
[6] IMUS, Seville 41080, Spain
关键词
Approximation numbers; Carleson embedding; Composition operator; Cusp map; Dirichlet space; COMPACT COMPOSITION OPERATORS; BERGMAN SPACES;
D O I
10.1016/j.jmaa.2015.01.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the decay of approximation numbers of compact composition operators on the Dirichlet space D can be as slow as we wish. We also prove the optimality of a result of O. El-Fallah, K. Kellay, M. Shabankhah and H. Youssfi on boundedness on 7, of self-maps of the disk all of whose powers are norm-bounded in D. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:734 / 746
页数:13
相关论文
共 12 条
[1]  
Arcozzi N, 2011, NEW YORK J MATH, V17A, P45
[2]  
Carroll T., 1991, J. Operator Theory, V26, P109
[3]  
Cowen C. C., 1994, COMPOSITION OPERATOR
[4]   Level sets and composition operators on the Dirichlet space [J].
El-Fallah, O. ;
Kellay, K. ;
Shabankhah, M. ;
Youssfi, H. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (06) :1721-1733
[5]  
Halmos P.R., 1982, Grad. Texts in Math., V19
[6]   CARLESON MEASURE THEOREM FOR BERGMAN SPACES [J].
HASTINGS, WW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :237-241
[7]   Approximation numbers of composition operators on the Dirichlet space [J].
Lefevre, Pascal ;
Li, Daniel ;
Queffelec, Herv ;
Rodriguez-Piazza, Luis .
ARKIV FOR MATEMATIK, 2015, 53 (01) :155-175
[8]   Compact composition operators on the Dirichlet space and capacity of sets of contact points [J].
Lefevre, Pascal ;
Li, Daniel ;
Queffelec, Herve ;
Rodriguez-Piazza, Luis .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) :895-919
[9]   On approximation numbers of composition operators [J].
Li, Daniel ;
Queffelec, Herve ;
Rodriguez-Piazza, Luis .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (04) :431-459
[10]   ANGULAR DERIVATIVES AND COMPACT COMPOSITION OPERATORS ON THE HARDY AND BERGMAN SPACES [J].
MACCLUER, BD ;
SHAPIRO, JH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (04) :878-906