Molecular Layer Doping: Non-destructive Doping of Silicon and Germanium

被引:15
作者
Long, Brenda [1 ,2 ,3 ]
Verni, Giuseppe Alessio [1 ,2 ]
O'Connell, John [1 ,2 ]
Holmes, Justin [1 ,2 ,3 ]
Shayesteh, Maryam [2 ]
O'Connell, Dan [2 ]
Duffy, Ray [2 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Mat Chem & Anal Grp, Dept Chem, Cork, Ireland
[2] Univ Coll Cork, Tyndall natl Inst, Cork, Ireland
[3] Trinity Coll Dublin, CRANN, Dublin, Ireland
来源
2014 20TH INTERNATIONAL CONFERENCE ON ION IMPLANTATION TECHNOLOGY (IIT 2014) | 2014年
关键词
Silicon; Germanium; Molecular Layer Doping; Chemistry; Doping; Surface Functionalisation; MONOLAYERS;
D O I
10.1109/IIT.2014.6939995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work describes a non-destructive method to introduce impurity atoms into silicon (Si) and germanium (Ge) using Molecular Layer Doping (MLD). Molecules containing dopant atoms (arsenic) were designed, synthesized and chemically bound in self-limiting monolayers to the semiconductor surface. Subsequent annealing enabled diffusion of the dopant atom into the substrate. Material characterization included assessment of surface analysis (AFM) and impurity and carrier concentrations (ECV). Record carrier concentration levels of arsenic (As) in Si (similar to 5x10(20) atoms/cm(3)) by diffusion doping have been achieved, and to the best of our knowledge this work is the first demonstration of doping Ge by MLD. Furthermore due to the ever increasing surface to bulk ratio of future devices (FinFets, MugFETs, nanowire-FETS) surface packing spacing requirements of MLD dopant molecules is becoming more relaxed. It is estimated that a molecular spacing of 2 nm and 3 nm is required to achieve doping concentration of 1020 atoms/cm(3) in a 5 nm wide fin and 5 nm diameter nanowire respectively. From a molecular perspective this is readily achievable.
引用
收藏
页数:4
相关论文
共 6 条
  • [1] Solid phase epitaxy versus random nucleation and growth in sub-20 nm wide fin field-effect transistors
    Duffy, R.
    Van Dal, M. J. H.
    Pawlak, B. J.
    Kaiser, M.
    Weemaes, R. G. R.
    Degroote, B.
    Kunnen, E.
    Altamirano, E.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (24)
  • [2] Controlled nanoscale doping of semiconductors via molecular monolayers
    Ho, Johnny C.
    Yerushalmi, Roie
    Jacobson, Zachery A.
    Fan, Zhiyong
    Alley, Robert L.
    Javey, Ali
    [J]. NATURE MATERIALS, 2008, 7 (01) : 62 - 67
  • [3] Investigation of plasma-doped fin structure and characterization of dopants by atom probe tomography
    Kim, B. H.
    Park, S. M.
    Park, S. W.
    Park, Y. B.
    Kim, H. J.
    Park, C. G.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [4] Toward Conformal Damage-Free Doping With Abrupt Ultrashallow Junction: Formation of Si Monolayers and Laser Anneal as a Novel Doping Technique for InGaAs nMOSFETs
    Kong, Eugene Y. -J.
    Guo, Pengfei
    Gong, Xiao
    Liu, Bin
    Yeo, Yee-Chia
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (04) : 1039 - 1046
  • [5] Tri(allyl)- and tri(methylallyl)arsine complexes of palladium(II) and platinum(II): synthesis, spectroscopy, photochemistry and structures
    Phadnis, PP
    Jain, VK
    Klein, A
    Schurr, T
    Kaim, W
    [J]. NEW JOURNAL OF CHEMISTRY, 2003, 27 (11) : 1584 - 1591
  • [6] Sasaki Y., 2012, CONFORMAL DOPING MEC